Open Access
Issue
ESAIM: PS
Volume 26, 2022
Page(s) 69 - 125
DOI https://doi.org/10.1051/ps/2021019
Published online 31 January 2022
  1. D. Aldous, B. Flannery and J.L. Palacios, Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov chains. Prob. Eng. Inform. Sci. 2 (1988) 293–307. [CrossRef] [Google Scholar]
  2. M.S. Bartlett, Methuen’s monographs on applied probability and statistics. Methuen (1960). [Google Scholar]
  3. M. Benaïm, Vertex-reinforced random walks and a conjecture of Pemantle. Ann. Probab. 25 (1997) 361–392. [MathSciNet] [Google Scholar]
  4. M. Benaïm, Dynamics of stochastic approximation algorithms. Séminaire de probabilités, XXXIII 1709 (1999) 1–68. [CrossRef] [Google Scholar]
  5. M. Benaïm, N. Champagnat and D. Villemonais, Stochastic approximation of quasi-stationary distributions for diffusion processesin a bounded domain. Ann. l’Inst. Henri Poincaré, Prob. Stat. 57 (2021) 726–739. [Google Scholar]
  6. M. Benaïm and B. Cloez, A stochastic approximation approach to quasi-stationary distributions on finite spaces. Electron. Commun. Probab. 20 (2015) 1–13. [Google Scholar]
  7. M. Benaïm, B. Cloez and F. Panloup, Stochastic approximation of quasi-stationary distributions on compact spaces and applications. Ann. Appl. Prob. 28 (2016). [Google Scholar]
  8. M. Benaïm and M. Hirsch, Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dyn. Differ. Equ. 8 (1996) 141–176. [CrossRef] [Google Scholar]
  9. A. Benveniste, M. Métivier and P. Priouret, Vol. 22 of Adaptive Algorithms and Stochastic Approximations. Springer Science & Business Media (2012). [Google Scholar]
  10. J. Blanchet, P. Glynn and S. Zheng, Analysis of a stochastic approximation algorithm for computing quasi-stationary distributions. Adv. Appl. Prob. 48 (2016) 792–811. [CrossRef] [Google Scholar]
  11. V.S. Borkar, Vol. 48 of Stochastic Approximation: A Dynamical Systems Viewpoint. Springer (2009). [Google Scholar]
  12. K. Burdzy, R. Holyst and P. March, A Fleming–Viot particle representation of the Dirichlet Laplacian. Commun. Math. Phys. 214 (2000) 679–703. [CrossRef] [Google Scholar]
  13. F. Cérou, B. Delyon, A. Guyader and M. Rousset, A central limit theorem for Fleming–Viot particle systems. Ann. l’Inst. Henri Poincaré, Prob. Stat. 56 (2020) 637–666. [Google Scholar]
  14. P. Collet, S. Martinez and J.S. Martin, Quasi-stationary distributions. Markov chains, diffusions and dynamical systems (2013). [CrossRef] [Google Scholar]
  15. P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171–208. [CrossRef] [EDP Sciences] [Google Scholar]
  16. P. Del Moral and L. Miclo, A Moran particle system approximation of Feynman–Kac formulae. Stoch. Process. Appl. 86 (2000) 193–216. [CrossRef] [Google Scholar]
  17. P. Del Moral and L. Miclo, On convergence of chains with occupational self-interactions. Proc. Royal Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 460 (2004) 325–346. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Del Moral and L. Miclo, Self-interacting Markov chains. Stoch. Anal. Appl. 24 (2006) 615–660. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Delyon, Stochastic approximation with decreasing gain: convergence and asymptotic theory. Tech. report, IRISA (2000), Publication interne 952. [Google Scholar]
  20. W.H. Fleming and M. Viot, Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28 (1979) 817–843. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Fort, Central limit theorems for stochastic approximation with controlled Markov chain dynamics. ESAIM: PS 19 (2013). [Google Scholar]
  22. P. Groisman and M. Jonckheere, Simulation of quasi-stationary distributions on countable spaces. Markov Process. Related Fields 19 (2012). [Google Scholar]
  23. P. Hall and C. Heyde, Martingale Limit Theory and its Applications. Academic Press (1980). [Google Scholar]
  24. R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press, New York, New York (1991). [CrossRef] [Google Scholar]
  25. J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23 (1952) 462–466. [CrossRef] [Google Scholar]
  26. A.N. Kolmogorov, On the solution of a problem in biology. Izv. NII Matem. Mekh. Tomskogo Univ. 2 (1938) 7–12. [Google Scholar]
  27. H. Kushner and G. George Yin, Vol. 35 of Stochastic Approximation and Recursive Algorithms and Applications. Springer Science & Business Media (2003). [Google Scholar]
  28. T. Lelievre, L. Pillaud-Vivien and J. Reygner, Central limit theorem for stationary Fleming–Viot particle systems in finite spaces. ALEA 15 (2018) 1163–1182. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Méléard and D. Villemonais, Quasi-stationary distributions and population processes. Prob. Surv. 9 (2012) 340–410. [Google Scholar]
  30. P.K. Pollett, Quasi-stationary distributions: a bibliography. http://www.maths.uq.edu.au/pkp/papers/qsds/qsds.pdf (2008). [Google Scholar]
  31. H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Stat. (1951) 400–407. [Google Scholar]
  32. B.A. Sevast’yanov, The theory of branching random processes. Uspekhi Mat. Nauk. 6 (1951) 47–99. [Google Scholar]
  33. N.G. VanKampen, Stochastic Processes in Physics and Chemistry. Elsevier, North-Holland, Amsterdam (1992). [Google Scholar]
  34. D. Villemonais, General approximation method for the distribution of Markov processes conditioned not to be killed. ESAIM: PS 18 (2014) 441–467. [CrossRef] [EDP Sciences] [Google Scholar]
  35. A.Q. Wang, G.O. Roberts and D. Steinsaltz, An approximation scheme for quasi-stationary distributions of killed diffusions. Stoch. Process. Appl. 130 (2020) 3193–3219. [CrossRef] [Google Scholar]
  36. A.M. Yaglom, Certain limit theorems of the theory of branching processes. Dokl. Acad. Nauk. SSSR 56 (1947) 795–798. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.