Open Access
Volume 26, 2022
Page(s) 1 - 25
Published online 13 January 2022
  1. A. Asselah, P.A. Ferrari, P. Groisman and M. Jonckheere, Fleming–Viot selects the minimal quasi-stationary distribution: the Galton–Watson case. Ann. l’Institut Henri Poincaré, Probabilités Stat. 52 (2016) 647–668. [MathSciNet] [Google Scholar]
  2. A. Asselah, P.A. Ferrari and P. Groisman, Quasistationary distributions and Fleming-Viot processes in finite spaces. J. Appl. Probab. 48 (2011) 322–332. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Bansaye, B. Cloez and P. Gabriel, Ergodic behavior of non-conservative semigroups via generalized Doeblin’s conditions. Acta Applicandae Mathematicae. [Google Scholar]
  4. M. Benaïm, N. Champagnat and D. Villemonais, Stochastic approximation of quasi-stationary distributions for diffusion processesin a bounded domain. Preprint arXiv:1904.08620 (2019). [Google Scholar]
  5. M. Benaïm and B. Cloez, A stochastic approximation approach to quasi-stationary distributions on finite spaces. Electr. Commun. Probab. 20 (2015) 13 pp. [Google Scholar]
  6. M. Benaïm, B. Cloez and F. Panloup, Stochastic approximation of quasi-stationary distributions on compact spaces and applications. Ann. Appl. Probab. 28 (2018) 2370–2416. [MathSciNet] [Google Scholar]
  7. K. Burdzy, R. Hoł yst and P. March, A Fleming-Viot particle representation of the Dirichlet Laplacian. Commun. Math. Phys. 214 (2000) 679–703. [CrossRef] [Google Scholar]
  8. K. Burdzy, R. Holyst, D. Ingerman and P. March, Configurational transition in a Fleming - Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A Math. General 29 (1996) 2633–2642. [CrossRef] [Google Scholar]
  9. F. Cerou, B. Delyon, A. Guyader and M. Rousset, A Central Limit Theorem for Fleming-Viot Particle Systems with Soft Killing. Preprint arXiv:1611.00515 (2016). [Google Scholar]
  10. N. Champagnat, K. Coulibaly-Pasquier and D. Villemonais, Criteria for exponential convergence to quasi-stationary distributions and applications to multi-dimensional diffusions. Preprint arXiv:1603.07909 (2016). [Google Scholar]
  11. N. Champagnat and D. Villemonais, Convergence of the Fleming-Viot process toward the minimal quasi-stationary distribution, ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2021) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Champagnat and D. Villemonais, Practical criteria for r-positive recurrence of unbounded semigroups, Electron. Commun. Probab. 25 (2020) 6. [Google Scholar]
  13. B. Cloez and M.-N. Thai, Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space. Stochastic Process. Appl. 126 (2016) 680–702. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Dawson, Measure-valued Markov processes (1993). [Google Scholar]
  15. P. Del Moral, Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Springer-Verlag, New York (2004). [Google Scholar]
  16. P. Del Moral, Mean Field Simulation for Monte Carlo Integration. Chapman and Hall/CRC, New York (2013). [CrossRef] [Google Scholar]
  17. P. Del Moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l’I.H.P. Probabilités et statistiques 37 (2001) 155–194. [Google Scholar]
  18. P. Del Moral and L. Miclo, A Moran particle system approximation of Feynman–KaC formulae. Stoch. Process. Appl. 86 (2000) 193–216. [CrossRef] [Google Scholar]
  19. P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171–208. [CrossRef] [EDP Sciences] [Google Scholar]
  20. P. Del Moral and D. Villemonais, Exponential mixing properties for time inhomogeneous diffusion processes with killing. Bernoulli 24 (2018) 1010–1032. [CrossRef] [MathSciNet] [Google Scholar]
  21. B. Delyon, F. Cérou, A. Guyader and M. Rousset, A Central Limit Theorem for Fleming-Viot Particle Systems with Hard Killing. To appear in Ann. l’IHP (Probability and Statistics) (2017) arXiv:1709.06771. [Google Scholar]
  22. A. Eberle, A. Guillin and R. Zimmer, Couplings and quantitative contraction rates for Langevin dynamics. Preprints arXiv:1703.01617 (2017). [Google Scholar]
  23. P. Ferrari and N. Maric, Quasi stationary distributions and Fleming-Viot processes in countable spaces. Electr. J. Probab. 12 (2007) 684–702. [Google Scholar]
  24. G. Ferré and G. Stoltz, Error estimates on ergodic properties of discretized Feynman–KaC semigroups. Numer. Math. 143 (2019) 261–313. [CrossRef] [MathSciNet] [Google Scholar]
  25. W.H. Fleming and M. Viot, Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28 (1979) 817–843. [CrossRef] [MathSciNet] [Google Scholar]
  26. N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (2015) 707–738. [Google Scholar]
  27. I. Grigorescu and M. Kang, Hydrodynamic limit for a Fleming-Viot type system. Stochastic Process. Appl. 110 (2004) 111–143. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab. 38 (2010) 2418–2442. [Google Scholar]
  29. C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18 (2012) 119–146. [CrossRef] [MathSciNet] [Google Scholar]
  30. T. Lelièvre, L. Pillaud-Vivien and J. Reygner, Central limit theorem for stationary Fleming-Viot particle systems in finite spaces. ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018) 1163–1182. [CrossRef] [MathSciNet] [Google Scholar]
  31. J.-U. Löbus, A stationary Fleming-Viot type Brownian particle system. Math. Z. 263 (2009) 541–581. [CrossRef] [MathSciNet] [Google Scholar]
  32. M.B. Majka, A. Mijatović and L. Szpruch, Non-asymptotic bounds for sampling algorithms without log-concavity. Preprints arXiv:1808.07105 (2018). [Google Scholar]
  33. G. Milstein and M.V. Tretyakov, Stochastic Numerics for Mathematical Physics (2004). [CrossRef] [Google Scholar]
  34. P. Monmarché, Elementary coupling approach for non-linear perturbation of Markov processes with mean-field jump mechanims and related problems. Preprints arXiv:1809.10953 (2018). [Google Scholar]
  35. P.A.P. Moran, Random processes in genetics. Math. Proc. Camb. Philos. Soc. 54 (1958) 60–71. [CrossRef] [Google Scholar]
  36. F.M. Norman, Ergodicity of diffusion and temporal uniformity of diffusion approximation. J. Appl. Prob. 14 (1977) 399–404. [CrossRef] [Google Scholar]
  37. W. Oçafrain and D. Villemonais, Convergence of a non-failable mean-field particle system. Stoch. Anal. Appl. 35 (2017) 587–603. [CrossRef] [MathSciNet] [Google Scholar]
  38. M. Rousset, On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38 (2006) 824–844. [CrossRef] [MathSciNet] [Google Scholar]
  39. C. Villani, Optimal transport. Old and new. Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). [CrossRef] [Google Scholar]
  40. D. Villemonais, General approximation method for the distribution of Markov processes conditioned not to be killed. ESAIM: PS 18 (2014) 441–467. [CrossRef] [EDP Sciences] [Google Scholar]
  41. D. Villemonais, Lower bound for the coarse Ricci curvature of continuous-time pure jump processes. Preprint arXiv:1705.06642 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.