Open Access
Issue
ESAIM: PS
Volume 25, 2021
Page(s) 220 - 257
DOI https://doi.org/10.1051/ps/2021009
Published online 28 May 2021
  1. P. Abry, P. Flandrin, M.S. Taqqu and D. Veitch, Self-similarity and long range dependence through the wavelet lens. Long-range dependence: Theory and Applications, edited by P. Doukhan, G. Oppenheim, M.S. Taqqu. Birhäuser (2003). [Google Scholar]
  2. R. Balan and C.A. Tudor , The stochastic heat equation with fractional-colored noise: existence of the solution. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008) 57–87. [Google Scholar]
  3. R. Balan and C.A. Tudor, Stochastic heat equation with multiplicative fractional-colored noise. J. Theor. Probab. 23 (2010) 834–870. [Google Scholar]
  4. R.M. Balan and C.A. Tudor, The stochastic wave equation with fractional colored noise: a random field approach. Stoch. Process. Appl. 120 (2010) 2468–2494. [Google Scholar]
  5. J.-M. Bardet, Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans. Inform. Theory 48 (2002) 991–999. [Google Scholar]
  6. J.-M. Bardet, G. Lang, G. Oppenheim, Georges, A. Philippe, S. Stoev and M.S. Taqqu, Murad, Semi-parametric estimation of the long-range dependence parameter: a survey. Theory and applications of long-range dependence. Birkhäuser Boston, Boston, MA (2003) 557–577. [Google Scholar]
  7. J.-M. Bardet and C.A. Tudor, A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stoch. Process. Appl. 120 (2010) 2331–2362. [Google Scholar]
  8. I. Cialenco, Statistical inference for SPDEs: an overview. Stat. Inference Stoch. Process. 21 (2018) 309–329. [Google Scholar]
  9. J. Clarke De la Cerda, C.A. Tudor, Hitting probabilities for the stochastic wave equation with fractional colored noise. Rev. Mat. Iberoam. 30 (2014) 685–709. [Google Scholar]
  10. R.C. Dalang and M. Sanz-Solé, Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three. Memoirs Am. Math. Soc. 199 (2009) 1–70. [Google Scholar]
  11. P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Inform. Theory 38 (1992) 910–917. [Google Scholar]
  12. M. Khalil and C.A. Tudor, Correlation structure, quadratic variations and parameter estimation for the solution to the wave equation with fractional noise. Electr. J. Stat. 12 (2018) 3639–3672. [Google Scholar]
  13. M. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Processes 5 (2002) 229–241. [Google Scholar]
  14. Yu.A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics. Springer (2004). [Google Scholar]
  15. Y. Meyer, F. Sellan and M.S. Taqqu, Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5 (2008) 465–494. [Google Scholar]
  16. I. Nourdin and G. Peccati, Normal Approximations with Malliavin Calculus From Stein ’s Method to Universality. Cambridge University Press (2012). [Google Scholar]
  17. D. Nualart, Malliavin Calculus and Related Topics, 2nd ed. Springer (2006). [Google Scholar]
  18. D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005) 177–193. [Google Scholar]
  19. PTG. Peccati and C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXIV (2004) 247–262. [Google Scholar]
  20. B.L.S. Praksa Rao, Semimartingales and their Statistical Inference. Chapman and Hall (1999). [Google Scholar]
  21. B.L.S. Prakasa Rao, Statistical inference for fractional diffusion processes. Wiley Series in Probability and Statistics. Chichester, John Wiley & Sons (2010). [Google Scholar]
  22. R. Shevchenko, M. Slaoui and C.A. Tudor, Generalized k-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus. J. Statist. Plann. Inference 207 (2020) 155–180. [Google Scholar]
  23. S. Torres, C.A. Tudor and F. Viens, Quadratic variations for the fractional-colored stochastic heat equation. Electr. J. Probab. 19 (2014) 76. [Google Scholar]
  24. C.A. Tudor, Analysis of variations for self-similar processes. A stochastic calculus approach. Probability and its Applications (New York). Springer, Cham (2013). [Google Scholar]
  25. C.A. Tudor and F.G. Viens, Statistical aspects of the fractional stochastic calculus. Ann. Statist. 35 (2007) 1183–1212. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.