
ESAIM: PS 25 (2021) 220–257 ESAIM: Probability and Statistics
https://doi.org/10.1051/ps/2021009 www.esaim-ps.org

WAVELET ANALYSIS FOR THE SOLUTION TO THE WAVE

EQUATION WITH FRACTIONAL NOISE IN TIME AND WHITE

NOISE IN SPACE∗
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Abstract. Via Malliavin calculus, we analyze the limit behavior in distribution of the spatial wavelet
variation for the solution to the stochastic linear wave equation with fractional Gaussian noise in time
and white noise in space. We propose a wavelet-type estimator for the Hurst parameter of the this
solution and we study its asymptotic properties.
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1. Introduction

In mathematical statistics, the parameter estimation for stochastic (partial) differential equations constitutes
a topic of wide interest (see, among many others, the monographs or surveys [8, 14] or [20]). In the last decades,
the statistical inference for stochastic models driven by fractional Brownian motion and related processes also
became a popular topic, due to the developments of the stochastic calculus for fractional processes (see, again
among many others, [13, 21, 25]). A common characteristic of the above mentioned references is that they
analyze estimators for the drift parameter or for the diffusion coefficient for standard fractional stochastic
(partial) differential equations and very few works studied the problem of the estimation of the Hurst parameter
of the driving noise (see [12, 22, 23]).

In our work, we will consider the linear stochastic wave equation (2.1) driven by a fractional-white Gaussian
noise (i.e. a Gaussian noise that behaves as a fractional Brownian motion in time and as a white noise in space)
and we construct and analyze statistical estimators for the Hurst index of the solution, based on the discrete
observations of the solution in space and time. The stochastic partial differential equation (2.1) constitutes a
model for an infinite vibrating string (under an ideal context, with uniform mass, neglecting the air resistance,
etc.) perturbed by a random force which behaves as a fractional Brownian motion in time and as a Wiener
process in space. For related works on the stochastic wave equation, we refer, among many others, to [4, 10, 24].
The value u(t, x) modelizes the vertical displacement from the x-axis of the string at time t and at position
x (in a coordinate system with x on the horizontal line and u on the vertical line). The displacement of the
string is clearly affected by the random force and in particular by its Hurst parameter H. This influence of the
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Hurst parameter appears in several aspects, such as the probability distribution of the solution to (2.1) or the
regularity of its sample paths. Indeed, for fixed x ∈ R, the process u is self-similar of order H + 1

2 in time and
its paths are Hölder continuous of order δ ∈ (0, H) in space and the same Hölder continuity holds with respect
to the time variable (see e.g. [24]). The Hurst parameter also characterizes other properties of the solution, such
as the hitting times, the Hausdorff dimension or the regularity of its local times (see e.g. [9]). Therefore, the
estimation of this parameter is of interest.

We propose a wavelet-type estimator defined via the decomposition of the observed process in a wavelet basis.
The wavelet estimators have been intensively used in order to identify the Hurst paramter of the fractional
Brownian motion and related processes (see e.g. [1, 5, 7, 11, 15]). Such estimators have in general several
advantages: they are robust and computationally efficient, they are based on the log–log regression of the
empirical variance onto several scales and this regression is useful for goodness-of-fit of the model, they offer
flexibility on the choice of the wavelet basis etc.

Let (u(t, x), t ≥ 0, x ∈ R) be the solution to the wave equation with fractional-white additive noise. Here we
used a wavelet decomposition of the solution to the wave equation (2.1) with respect to its space variable by
assuming that the time variable is fixed. That is, we consider a “mother wavelet” Ψ with Q vanishing moments
(Q ≥ 1) and we define the wavelet coefficient d(t, a, i) = 1√

a

∫
R Ψ

(
x
a

)
u(t, x)dx with t > 0 fixed and the scale

a > 0. The wavelet variation, denoted VN (t, a) in the sequel, is defined by (2.10) by taking the sum of the
centered and renormalized squared wavelet coefficients. By analyzing the asymptotic behavior of the wavelet
variation VN (t, a) as N →∞, we are able to construct, via a log–log regression of the empirical variance onto
several scales, an estimator for the Hurst parameter of the solution to (2.1) and to analyze its asymptotic
behavior. The asymptotic behavior of the estimator is strongly connected to the asymptotic behavior of the
wavelet variation VN (a). The time t also plays a role. For practical purposes, it would be convenient to estimate
H by assuming that the solution is observed at a fixed time and at discrete points in space. On the other hand,
as we will notice later, in the case of fixed time the empirical variance does not behave as a power function
whose exponent is a linear function of H and the log–log regression argument cannot be applied. The relation
between the wavelet variance and the Hurst index is more complex and we construct our estimator by analyzing
this connection.

The techniques that we use to study the limit behavior in distribution of the wavelet variation are based on
the Malliavin calculus and Stein method. We employ the recent Stein-Malliavin theory (see e.g. [16]) in order to
prove that this sequence satisfies a Central Limit Theorem (CLT) and to derive the rate of convergence for this
limit theorem. As mentioned above, we distinguish two situations: when the time t varies with N (i.e. t = Nβ

with β > 0) or when the time t is fixed (and in this case we restrict to the case of the Haar wavelet). We will see
that in these two situations, the behavior of the wavelet variation is pretty different, although it always satisfies
a CLT (with a different rate of convergence). We deduce the limit behavior of the associated Hurst parameter
estimators, via a log–log regression of the empirical variance. We also notice that we use spatial wavelet variation
to estimate the Hurst parameter of the solution, although this parameter appears in the time covariance of the
noise and it characterizes the self-similarity of the solution in time.

We organized our paper in the following way: Section 2 contains some preliminaries on the wave equation with
fractional-colored noise and on wavelets. In Section 3 we state our main theoretical results. Section 4 contains the
proofs of the main results, including the correlation structure of the wavelet coefficients, the magnitude of the
L2 -norm of the wavelet variation and the Central Limit Theorem for this sequence as well as the Berry-Essén
bound for this limit theorem. Section 5 is devoted to discretized of the wavelet variation and the construction
and the asymptotic study of the wavelet-type estimator for the Hurst parameter of the solution to the stochastic
wave equation.

2. Preliminaries

Let us start by presenting some basic facts on the solution to the wave equation with additive fractional-
colored noise and on the wavelet analysis.
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2.1. The solution to the wave equation

Let (u(t, x), t ≥ 0, x ∈ Rn) be the solution to the wave equation with fractional-white noise


∂2u
∂t2 (t, x) = ∆u(t, x) + ẆH(t, x), t ∈ (0, T ], T > 0, x ∈ Rn

u(0, x) = 0, x ∈ Rn

∂u
∂t (0, x) = 0, x ∈ Rn.

(2.1)

Here ∆ is the Laplacian on Rn, n ≥ 1 and WH = {WH
t (A); t ∈ [0, T ], A ∈ Bb(Rn)} is a real valued centered

Gaussian field, over a given complete filtered probability space (Ω,F, (Ft)t≥0,P), whose covariance function is

E(WH
t (A)WH

s (B)) = RH(t, s)λ(A ∩B), for every t, s ≥ 0, A,B ∈ Bb(Rn), (2.2)

where λ is the d-dimensional Lebesgue measure, Bb(Rn) is the set of the λ-bounded Borel subsets of Rn and
RH is the covariance function of the fBm with Hurst parameter H ∈ (0, 1) given by

RH(t, s) :=
1

2

(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0. (2.3)

Throughout this work, we will assume H ∈
(

1
2 , 1
)
.

The solution of the equation (2.1) is understood in the mild sense, that is, it is defined as a square-integrable
centered field u = (u(t, x); t ∈ [0, T ], x ∈ Rn) defined by

u(t, x) =

∫ t

0

∫
Rd
G1(t− s, x− y)WH(ds,dy), t ≥ 0, x ∈ Rn, (2.4)

where G1 is the fundamental solution to the wave equation and the integral in (2.4) is a Wiener integral with
respect to the Gaussian process WH . Recall that for n = 1 (we will later restrict to this situation in our work)
we have, for every t ≥ 0 and x ∈ R,

G1(t, x) =
1

2
1{|x|<t}. (2.5)

We refer to e.g. [10] (when H = 1
2 ) and to e.g. [4] (for H ∈

(
1
2 , 1
)
) for the definition and basic properties of the

solution. The solution (2.4) is well-defined in dimension n = 1 for every H ∈
(

1
2 , 1
)

(see e.g. [24]) and we have
an explicit formula for its spatial covariance which will be a key ingredient in our study (see [12])

E (u(t, x)u(t, y)) =
1

2

(
cH |y − x|2H+1 − t |y − x|

2H

2
+

t2H+1

2H + 1

)
1{|y−x|<t}

+
(2t− |y − x|)2H+1

8(2H + 1)
1{t≤|y−x|<2t} (2.6)

with cH = 4H−1
4(2H+1) . When t > 1 and |x− y| ≤ 1, this expression reduces to

E (u(t, x)u(t, y)) =
1

2

(
cH |y − x|2H+1 − t |y − x|

2H

2
+

t2H+1

2H + 1

)
. (2.7)
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We notice that the solution is stationary in space while it has a scaling property in time (it is actually self-similar
in time of order H + 1

2 ). The sample paths of the solution are Hölder continuous in time and in time of order
δ ∈ (0, H) (see e.g. [24]).

2.2. Wavelets

Let Ψ be a continuous function with support in [0, 1] such that its first Q moments vanish i.e. there exists
and integer Q ≥ 1 such that∫

R
tpΨ(t)dt = 0 for p = 0, 1, . . . , Q− 1 and

∫
R
tQΨ(t)dt 6= 0. (2.8)

The function Ψ is usually called mother wavelet. Define for a > 0, i = 1, . . . , Na (with Na = [N/a]− 1)

d(t, a, i) =
1√
a

∫
R

Ψ
(x
a
− i
)
u(t, x)dx =

√
a

∫
R

Ψ(x)u(t, a(x+ i))dx (2.9)

and

d̃(t, a, i) =
d(t, a, i)

(E(d(t, a, i))2)
1
2

.

Also define the wavelet variation in space of the solution (2.4) by

VN (t, a) =
1

Na

Na∑
i=1

(
d̃(t, a, i)2 − 1

)
. (2.10)

We will study the asymptotic behavior, as Na → ∞, of the wavelet variation VN (t, a). In applications, the
parameter a, which is called scale, will depend on N and it is usually assumed that a = aN →N→∞ ∞.

Given the covariance of the solution to the wave equation (see formula (2.6)), it is clear that the time t will
play an important role, depending on its position with respect to the spatial increment |x− y|.

We will consider two situations: the fixed time case, i.e. the time t > 0 is fixed, and the moving time case,
when the time depends on N and it tends to infinity as N →∞. The first situation would be more convenient
for applications to parameter estimation, since it means that the solution is observed only at a fixed time.
Nevertheless, in this case the wavelet variation does not provide an explicit estimator since the usual log–log
regression procedure to construct an wavelet estimator based on VN (t, a) leads to a more complicated equation
in H. A slightly different argument is then used for fixed time.

We will start with the moving time situation. We will assume

a = aN = Nα with 0 < α < 1 and t = tN = Nβ with β ≥ 1. (2.11)

The choice of such time t will be explained later, it allows to reduce the expression of the correlation of the
wavelet coefficients. Then, we will consider the situation when the time is fixed, i.e. we suppose

a = aN = Nα with 0 < α < 1 and t > 0 is fixed. (2.12)

In this second case, in order to have a precise estimate on the wavelet coefficient and on the empirical variance
EVN (t, a), we need to restrict to a particular case of wavelet system (the Haar wavelet).
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3. Main results

In this section we will state our main theoretical results. Their proofs are postponed to Section 4. These
results give the asymptotic behavior as N →∞ of the wavelet variation VN (t, a) given by (2.10) as well as the
limit behavior in distribution of the renormalized wavelet variation. We will show that, in both moving time
and fixed time cases, the magnitude of the variance of VN (t, a) as N → ∞ is the same and the renormalized
wavelet variation satisfies a Central Limit Theorem. We also evaluate the rate of convergence to the normal
distribution, which varies in the two cases under consideration.

3.1. The moving time case

Let us start by treating the situation when the time t depends on N , i.e. we assume (2.11). In this case, we
obtain the following renormalization of the wavelet variation.

Proposition 3.1. Let VN (t, a) be given by (2.10). Assume Q ≥ 2 or Q = 1, H < 3
4 . Let aN , tN be given by

(2.11). Then

N1−αEVN (tN , aN )2 →N→∞
2

K2
Ψ,H

∑
k∈Z

gH(k)2 := K0,Ψ,H (3.1)

with gH given by

gH(k) =

∫
R

∫
R

dxdyΨ(x)Ψ(y)|x− y + k|2H (3.2)

and KΨ,H given by, for H ∈
(

1
2 ,

3
2

)
KΨ,H = −

∫
R

∫
R

dxdyΨ(x)Ψ(y)|x− y|2H . (3.3)

Notice that the above integral (3.3) is finite because the support of the mother wavelet Ψ is included in the
interval [0, 1] and 2H > 0. We assume, as in [5], that KΨ,H > 0 (which is satisfied by a large choice of the mother
wavelet Ψ). The results in Section 4 show also that the series in the right-hand side of (3.1) is convergent.

Let us denote, for every N ≥ 1

FN = K
− 1

2

0,Ψ,HN
1−α
2 VN (tN , aN ) (3.4)

with VN (tN , aN ) defined in (2.10), K0,Ψ,H from (3.1) and suppose that assumption (2.11) is verified. From
Proposition 3.1

EF 2
N →N→∞ 1.

We will obtain the following result. We denote below by c, C generic strictly positive constants that may
change from line to line. By d we denote the distance between distributions of random variable and below it
can be each of the following distances: Kolmogorov, total variation, Wasserstein or Fortet-Mourier (see [16]).

Theorem 3.2. Let FN be given by (3.4). Then the sequence (FN )N≥1 converges in distribution to a standard
normal random variable Z ∼ N(0, 1) and

d(FN , Z) ≤ cN
α−1
2 .
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We can also prove a multidimensional central limit theorem for the wavelet variation considered at different
scales. This will be used in order to estimate the Hust parameter of the solution to the wave equation in the
next section.

Theorem 3.3. Let VN (t, a) be given by (2.10) and assume (2.11). Let d ≥ 1. Then the d-dimensional random

vector
(
N

1−α
2 Vn(tN , LaN )

)
L=1,...,d

converges in distribution, as N →∞, to a centered d-dimensional Gaussian

vector with covariance matrix (ΓL1,L2)L1,L2=1,...,d where

ΓL1,L2
=

32

K2
Ψ,H

1

(L1L2)2H+1
C(L1, L2, H) (3.5)

with C(L1, L2, H) given by

C(L1, L2, H) = lim
N→∞

N1−α
NL1aN∑
i=1

NL2aN∑
j=1

(gL1,L2,H(i, j))
2

(3.6)

where

gL1,L2,H(i, j) =

∫
R

∫
R

dxdyΨ(x)Ψ(y)|L1x− L2y + L1 − L2j|2H .

It follows from our proofs in Section 4 that the limit in the right-hand side of (3.6) exists and is finite.

3.2. The fixed time case

If t is fixed, we can prove the following approximation result for the variance of the wavelet variation. As
mentioned, the role of the mother wavelet will be played by the Haar wavelet, i.e.

Ψ(x) =


1, 0 ≤ x < 1

2

−1, 1
2 ≤ x < 1

0, otherwise.

(3.7)

Proposition 3.4. If VN (t, a) is given by (2.10) and (2.12), (3.7) hold true, we have for every t > 0

N1−αEVN (t, aN )2 →N→∞ 2. (3.8)

By Proposition 3.4, we have the following renormalization of the wavelet variation

GN =:
1√
2
N

1−α
2 V (t, aN ), (3.9)

i.e. EG2
N →N→∞ 1. We will show below that the renormalized wavelet variation satisfies a CLT also when the

time is fixed.

Theorem 3.5. The sequence (GN )N≥1 given by (3.9) converges in distribution to Z ∼ N(0, 1) and for N large
enough

d(GN , Z) ≤ C
(

1

N
1−α
2

+
1

N2α

)
.
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Let us make a short discussion around the above statements.

Remark 3.6. • We notice that the renormalization of (2.10) is of the same order in both cases (fixed time
or moving time) although, as we will see in Section 4, the correlation structure of the wavelet coefficient
is different.

• The wavelet variation (2.10) satisfies a CLT both in the moving or fixed time cases. On the other hand,
the behavior of this sequence is pretty different in these two cases. While for fixed time, this sequence
basically behaves as a sum of independent random variables (see also Remark 3.6), in the moving time
case there is a non-trivial correlation between all the summands that compose VN (t, a).

• The rate of convergence of the sequence (3.9) to the normal distribution varies upon α ∈ (0, 1): when
α ∈

(
0, 1

5

)
, we have d(GN , Z) ≤ c 1

N2α while for α ∈
(

1
5 , 1
)
, one has d(GN , Z) ≤ c 1

N
1−α
2

. Theorem 3.5 also

suggests that if the scale a is constant (i.e. α = 0) the sequence VN (t, a) does not satisfy a CLT.

4. Proofs

This part contains the proofs of the theoretical results stated in Section 3.

4.1. The correlation structure of the wavelet coefficient

The behavior of the wavelet variation (2.10) will depend on the behavior of the variance of the wavelet
coefficient Ed(t, a, i)2 and of the correlation between the wavelet coefficients, i.e. Ed(t, a, i)d(t, a, j) with i 6= j.
We will start by analyzing the behavior of these quantities in both cases (2.11) and (2.12).

Let d(t, a, i) be given by (2.9) with t > 0, a > 0 and i = 1, . . . , Na. We will use the following notation
throughout our work

D(t, a) := Ed(t, a, i)2 (4.1)

for every t > 0, a > 0 and i = 1, . . . , Na. Notice that, due to the stationarity of the process (u(t, x), x ∈ R), the
quantity Ed(t, a, i)2 does not depend on i.

Let t > 0, a > 0. For every i, j = 1, . . . , Na we have from the covariance formula (2.6)

Ed(t, a, i)d(t, a, j) = a

∫
R

∫
R

dxdyΨ(x)Ψ(y)Eu(t, a(x+ i))u(t, a(x+ j)) (4.2)

= a

∫
R

∫
R

dxdyΨ(x)Ψ(y)
[cH

2
a2H+1|x− y + i− j|2H+1

− t
4
a2H |x− y + i− j|2H +

t2H+1

2(2H + 1)

]
1{|x−y+i−j|< t

a}

+a

∫
R

∫
R

dxdyΨ(x)Ψ(y)
(2t− a|x− y + i− j|)2H+1

8(2H + 1)
1{ ta≤|x−y+i−j|<2 ta}.

We will see below that the above expression will simplify under assumption (2.11).

4.2. The moving time case

First, we assume that we work under the assumption (2.11). We start by studying the variance of the wavelet
coefficient. Let us recall the notation KΨ,H from (3.3).

We have the following result.
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Lemma 4.1. Assume (2.11). Consider the wavelet coefficient d(t, a, i) defined by (2.9) and its variance D(t, a)
given by (4.1). Then

1

Nβ+(2H+1)α
D(tN , aN )→N→∞

1

4
KΨ,H

with KΨ,H from (3.3).

Proof. From the assumption (2.11) and the property (2.8) of the function Ψ, using also |x − y| ≤ 1 (which
implies that |x− y + i− j| ≤ tN = Nβ by (2.11)), the last two summands in (4.2) vanish and we obtain

Ed(tN , aN , i)d(tN , aN , j) (4.3)

= aN

∫
R

∫
R

dxdyΨ(x)Ψ(y)

[
cH
2
a2H+1
N |x− y + i− j|2H+1 − a2H

N

tN
4
|x− y + i− j|2H

]
.

Let us take i = j in (4.3). We have

D(tN , aN ) = Ed(tN , aN , i)
2 = −cH

2
KΨ,H+ 1

2
N (2H+2)α +

1

4
KΨ,HN

β+(2H+1)α. (4.4)

Since β + (2H + 1)α > (2H + 2)α (because β > α) we obtain the conclusion.

Let us now study the correlation (4.3) with i 6= j. We can write

Ed(tN , aN , i)d(tN , aN , j) =
cH
2
a2H+2
N gH+ 1

2
(i− j)− tN

4
a2H+1
N gH(i− j) (4.5)

with the notation gH(k) from (3.2). Notice that for every k ∈ Z we have gH(k) = gH(−k) for k ∈ Z. The analysis
of the quantity gH(k) for k large, will give the asymptotics of the correlation (4.5). Recall that the integer Q ≥ 1
is fixed by (2.8).

Lemma 4.2. Let gH be given by (3.2). Then for k large enough, we have for every H ∈
(

1
2 ,

3
2

)
|gH(k)| ≤ CΨ,H,Qk

4H−4Q

where CΨ,H,Q is a strictly positive constant not depending on k.

Proof. Using the following asymptotic expansion at z = 0

(1 + z)2H = 1 + 2Hz + ....+
2H(2H − 1)...(2H − 2Q)

(2Q− 1)!
z2Q−1 + CH,Q(1 + θz)

2H−2Qz2Q

where θz is a point located between 0 and z, we can write, for k large enough, if CH,Q is a constant depending
only of H and Q,

gH(k) = k2H

∫
R

∫
R

dxdyΨ(x)Ψ(y)

(
1 +

x− y
k

)2H

= CH,Qk
2H

∫
R

∫
R

dxdyΨ(x)Ψ(y)

(
x− y
k

)2Q

(1 + θx,y,k)2H−2Q
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where we used (2.8) and we denoted by θx,y,k a point located between 0 and x−y
k . Since |x − y| ≤ 1, we have

for k ≥ 2

1

2
≤ |1 + θx,y,k| ≤

3

2
.

We deduce that, for k large

|gH(k)| ≤ CH,Q22Q−2Hk2H−2Q

∫
R

∫
R

dxdy|Ψ(x)Ψ(y)||x− y|2Q = CΨ,H,Qk
2H−2Q

using the fact that the support of Ψ is included in the interval [0, 1].

Lemma 4.3. Let gH be given by (3.2). Denote, for a > 0 and N ≥ 1

gN,H(a) =

Na∑
i,j=1

gH(i− j)2. (4.6)

Then, for every H ∈
(

1
2 ,

3
4

)
(if Q = 1) and for every H ∈

(
1
2 , 1
)

(if Q ≥ 2)

1

Na
gN,H(a)→Na→∞

∑
k∈Z

gH(k)2. (4.7)

Moreover, for every H ∈
(

1
2 , 1
)

and for every Q ≥ 1, for N large enough

1

Na
|gN,H+ 1

2
(a)| ≤

{
CΨ,H,Q if Q ≥ 2,

CΨ,H,QN
4H−1
a if Q = 1

(4.8)

and

1

Na

∣∣∣∣∣∣
Na∑
i,j=1

gH(i− j)gH+ 1
2
(i− j)

∣∣∣∣∣∣ ≤
{
CΨ,H,Q if Q ≥ 2,

CΨ,H,QN
4H−2
a if Q = 1.

(4.9)

Proof. We can write

1

Na
gN,H(a) =

∑
k∈Z

gH(k)21{|k|≤Na}
Na − |k|
Na

.

By the dominated convergence theorem and Lemma 4.2 we clearly have

1

Na
gN,H(a)→Na→∞

∑
k∈Z

gH(k)2.

Note that the series
∑
k∈Z gH(k)2 is convergent due to Lemma 4.2. Now

1

Na
|gN,H+ 1

2
(a)| =

∣∣∣∣∣∑
k∈Z

gH+ 1
2
(k)21{|k|≤Na}

Na − |k|
Na

∣∣∣∣∣
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≤
∑
|k|≤Na

gH+ 1
2
(k)2 ≤ C

∑
|k|≤Na

k4H+2−4Q

again by Lemma 4.2. The series
∑
k∈Z k

4H+2−4Q is convergent when Q ≥ 2 and for Q = 1 and H > 1
2 , the

sequence
∑
|k|≤Na k

4H+2−4Q behaves as CH,QN
4H−1
a . This implies the estimate (4.8). A similar argument gives

(4.9), because from Lemma 4.2

1

Na

∣∣∣∣∣∣
Na∑
i,j=1

gH(i− j)gH+ 1
2
(i− j)

∣∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Z

gH(k)gH+ 1
2
(k)1{|k|≤Na}

Na − |k|
Na

∣∣∣∣∣
≤ CΨ,H,Q

∑
|k|≤Na

k4H+1−4Q.

4.2.1. The fixed time case

Let us assume t > 0 is fixed, i.e. we assume (2.12). As before, we use the notation

D(t, aN ) = Ed(t, aN , i)
2

for i = 1, . . . , NaN , with aN = Nα, 0 < α < 1. We start by estimating the behavior of D(t, aN ) as N →∞. It
is impossible to get the exact behavior of this quantity for an arbitrary function Ψ. Therefore, in the sequel we
will choose the function Ψ to be the mother wavelet of the Haar system, see (3.7).

Proposition 4.4. Let Ψ be given by (3.7) and assume (2.12). For every t > 0 and for N large enough

D(t, aN ) = K1,t(H) +K2,t(H)
1

Nα

with

K1,t(H) =
1

2(H + 1)
t2H+2. (4.10)

and K2,t(H) =
∑4
j=1Kj,2,t(H) for Kj,2,t(H), j = 1, . . . , 4 given by (4.17), (4.18), (4.19) and (4.20). In

particular,

D(t, aN )→N→∞ K1,t(H).

Proof. From (4.2) we have

D(t, aN ) = I1,t,N + I2,t,N + I3,t,N + I4,t,N

with

I1,t,N =
cH
2
Nα(2H+2)AH+ 1

2 ,N
, I2,t,N = − t

4
Nα(2H+1)AH,N , (4.11)

I3,t,N =
t2H+1

2(2H + 1)
Nα

∫
R

∫
R

dxdyΨ(x)Ψ(y)1{|x−y|< t
Nα }, (4.12)
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I4,t,N = Nα 1

8(2H + 1)
BH,N (4.13)

where we used the notation

AH,N :=

∫
R

∫
R

dxdyΨ(x)Ψ(y)|x− y|2H1{|x−y|< t
Nα } (4.14)

and

BH,N =

∫ 1

0

∫ 1

0

dxdyΨ(x)Ψ(y) (2t−Nα|x− y|)2H+1
1{ t

Nα≤|x−y|<2 t
Nα }. (4.15)

To obtain the speed of convergence of I1,t,N and I2,t,N , we need to study the sequence AH,N defined by (4.14).
Clearly, AH,N converges to zero as N → ∞ but we need to analyze how fast this sequence goes to zero. We
have

AH,N = 2

∫ 1

0

dx

∫ x

0

dyΨ(x)Ψ(y)(x− y)2H1{x−y< t
Nα }

= 2

∫ 1

0

dx

∫ x

(x−tN−α)∨0

dyΨ(x)Ψ(y)(x− y)2H

= 2

∫ tN−α

0

dx

∫ x

0

dyΨ(x)Ψ(y)(x− y)2H + 2

∫ 1

tN−α
dx

∫ x

x−tN−α
dyΨ(x)Ψ(y)(x− y)2H .

Let us chose N large enough such that

t

Nα
<

1

2
.

We will have, with Ψ from (3.7),

AH,N = 2

∫ tN−α

0

dx

∫ x

0

dy(x− y)2H + 2

∫ 1
2

tN−α
dx

∫ x

x−tN−α
dy(x− y)2H

−2

∫ 1

1
2

dx

∫ x

x−tN−α
dyΨ(y)(x− y)2H

and by separating the integral dy in the last term above upon x = tN−α less or bigger than one-half we will
obtain

AH,N = 2

∫ tN−α

0

dx

∫ x

0

dy(x− y)2H + 2

∫ 1
2

tN−α
dx

∫ x

x−tN−α
dy(x− y)2H

−2

∫ 1
2 +tN−α

1
2

dx

∫ 1
2

x−tN−α
dy(x− y)2H + 2

∫ 1
2 +tN−α

1
2

dx

∫ x

1
2

dy(x− y)2H

+2

∫ 1

1
2 +tN−α

dx

∫ x

x−tN−α
dy(x− y)2H .



WAVELET ANALYSIS FOR THE SOLUTION TO THE WAVE EQUATION 231

This gives

AH,N =
2

2H + 1

[
1

2H + 2

(
t

Nα

)2H+2

+

(
t

Nα

)2H+1(
1

2
− t

Nα

)
−
(

t

Nα

)2H+1
t

Nα

+
1

2H + 2

(
t

Nα

)2H+2

+
1

2H + 2

(
t

Nα

)2H+2

+

(
t

Nα

)2H+1(
1

2
− t

Nα

)]

=
2

2H + 1

[
3

1

2H + 2

(
t

Nα

)2H+2

+

(
t

Nα

)2H+1(
1− 3

t

Nα

)]

= − 6

2H + 2

(
t

Nα

)2H+2

+
2

2H + 1

(
t

Nα

)2H+1

. (4.16)

Consequently, we obtain from (4.16) the following behavior for the summand I1,t,N in (4.11)

I1,t,N =
cH
2
Nα(2H+2)AH+ 1

2 ,N
= K1,1,t(H) +K1,2,t(H)

1

Nα
(4.17)

with

K1,1,t(H) =
cH

2H + 2
t2H+2 and K1,2,t(H) =

−3cH
2H + 3

t2H+3.

The second summand I2,t,N gives, using (4.16)

I2,t,N = − t
4
Nα(2H+1)AH,N = K2,1,t(H) +K2,2,t(H)

1

Nα
(4.18)

with

K2,1,t(H) = − 1

2(2H + 1)
t2H+2 and K2,2,t(H) =

3

2(2H + 2)
t2H+3.

Let us now calculate the term I3,t,N defined in (4.13). We can write

I3,t,N = Nα t2H+1

2(2H + 1)
2

∫ 1

0

dx

∫ x

0

dyΨ(x)Ψ(y)1{x−y< t
Nα }

and since (this is the same calculation as for AH,N without the factor (x− y)2H)

2

∫ 1

0

dx

∫ x

0

dyΨ(x)Ψ(y)1{x−y< t
Nα } =

2t

Nα
− 3

(
t

Nα

)2

we obtain

I3,t,N = K3,1,t(H) +K3,2,t(H)
1

Nα
(4.19)
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with

K3,1,t(H) =
1

(2H + 1)
t2H+2 and K3,2,t(H) =

−3

2(2H + 1)
t2H+3.

Let us regard the last summand I4,t,N in (4.13). With BH,N given by (4.15)

BH,N =

∫ 1

0

∫ 1

0

dxdyΨ(x)Ψ(y) (2t−Nα|x− y|)2H+1
1{ t

Nα≤|x−y|<2 t
Nα }

= 2

∫ 1

0

∫ x

0

dxdyΨ(x)Ψ(y) (2t−Nα(x− y))
2H+1

1{ t
Nα≤x−y<2 t

Nα }

= 2

∫ 1

0

dx

∫ x−tN−α

(x−2tN−α)∨0

dyΨ(x)Ψ(y) (2t−Nα(x− y))
2H+1

= 2

∫ 2tN−α

0

dx

∫ x−tN−α

0

dyΨ(x)Ψ(y) (2t−Nα(x− y))
2H+1

+2

∫ 1

2tN−α
dx

∫ x−tN−α

x−2tN−α
dyΨ(x)Ψ(y) (2t−Nα(x− y))

2H+1
:= B1,H,N +B2,H,N .

We estimate separately the summands B1,H,N and B2,H,N . First, notice that we can choose N large enough so
that t

Nα <
1
4 and therefore 2t

Nα <
1
2 . We then get

B1,H,N = 2
t2H+3

(2H + 2)N2α
(2− 22H+3

2H + 3
)

while for B2,H,N we have

B2,H,N = 2

∫ 1/2

2tN−α
dx

∫ x−tN−α

x−2tN−α
dy (2t−Nα(x− y))

2H+1

−2

∫ 1/2+tN−α

1/2

dx

∫ x−tN−α

x−2tN−α
dy (2t−Nα(x− y))

2H+1

+2

∫ 1

1/2+tN−α
dx

∫ x−tN−α

x−2tN−α
dy (2t−Nα(x− y))

2H+1

= 2
t2H+2

Nα(2H + 2)

(
1− 4t

Nα

)
.

By putting together the above computations, we obtain

I4,t,N :=
1

8(2H + 1)
NαBH,N = K4,1,t(H) +K4,2,t(H)

1

Nα
(4.20)

with

K4,1,t(H) =
t2H+2

8(H + 1)(2H + 1)
and K4,2,t(H) = − t2H+3

8(H + 1)(2H + 1)

(
2 +

22H+3

2H + 3

)
.



WAVELET ANALYSIS FOR THE SOLUTION TO THE WAVE EQUATION 233

From (4.17), (4.18), (4.19) and (4.20) we obtain the conclusion. In particular, concerning the constant K1,t(H)
which is needed in the sequel

K1,t(H) = t2H+2

(
cH

2H + 2
− 1

2(2H + 1)
+

1

2H + 1
+

1

8(2H + 1)(H + 1)

)
=

1

2H + 2
t2H+2

by using the expression of cH in (2.6).

We also need to analyze Ed(t, aN , i)d(t, aN , j) when |i− j| = 1. Only this correlation coefficient will be needed
for the renormalization of the sequence (2.10).

Proposition 4.5. Let d(t, a, i) be given by (2.9) and assume (2.12) and (3.7). Then for every t > 0, N ≥ 1

Ed(t, aN , i)d(t, aN , i+ 1) = Lt(H)
1

Nα

with Lt(H) from (4.28).

Proof. We have

Ed(t, aN , i)d(t, aN , j) = fH,N (i− j)

where (recall aN = Nα)

fH,N (k)

= aN

∫
R

∫
R

dxdyΨ(x)Ψ(y)
[cH

2
a2H+1
N |x− y + k|2H+1

− t
4
a2H
N |x− y + k|2H +

t2H+1

2(2H + 1)

]
1{|x−y+k|< t

aN
}

+aN

∫
R

∫
R

dxdyΨ(x)Ψ(y)
(2t− aN |x− y + k|)2H+1

8(2H + 1)
1{ t

aN
≤|x−y+k|<2 t

aN
}. (4.21)

Hence

Ed(t, aN , i)d(t, aN , i+ 1) = fH,N (1).

We can write, via (4.2)

fH,N (1) = J1,t,N + J2,t,N + J3,t,N + J4,t,N

with

J1,t,N =
cH
2
Nα(2H+2)CH+ 1

2 ,N
, J2,t,N =

−t
4
Nα(2H+1)CH,N (4.22)

J3,t,N = Nα t2H+1

2(2H + 1)

∫ 1

0

∫ 1

0

dxdyΨ(x)Ψ(y)1{x−y+1< t
Nα } (4.23)

J4,t,N = Nα

∫ 1

0

∫ 1

0

dxdyΨ(x)Ψ(y)
(2t−Nα|x− y + 1|)2H+1

8(2H + 1)
1{ t

aN
≤|x−y+1|<2 t

aN
} (4.24)
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where

CH,N =

∫ 1

0

∫ 1

0

dxdyΨ(x)Ψ(y)(x− y + 1)2H1{x−y+1< t
Nα }.

We have, if N is such that t
Nα <

1
2 ,

CH,N =

∫ 1

0

dx

∫ 1

x+1−tN−α
dyΨ(x)Ψ(y)(x− y + 1)2H

= −
∫ t

Nα

0

∫ 1

x+1−tN−α
dy(x− y + 1)2H

=

(
1

(2H + 1)(2H + 2)
− 1

2H + 1

)(
t

Nα

)2H+2

.

Therefore

J1,t,N = K5,1,t(H)
1

Nα
(4.25)

with

K5,1,t(H) =
cHt

2H+3

2

(
1

(2H + 2)(2H + 3)
− 1

2H + 2

)
.

For the second term J2,t,N in (4.22), it is immediate to see that

J2,t,N =
−t
4
Nα(2H+1)CH,N = K6,1,t(H)

1

Nα
(4.26)

with

K6,1,t(H) =
−t2H+3

4

(
1

(2H + 1)(2H + 2)
− 1

2H + 1

)
.

The third summand (4.23) gives

J3,t,N = Nα t2H+1

2(2H + 1)

∫ 1

0

∫ 1

0

dxdyΨ(x)Ψ(y)1{x−y+1< t
Nα }

= −Nα t2H+1

2(2H + 1)

∫ t
Nα

0

dx

∫ 1

x+1−tN−α
dy =

t2H+3

4(2H + 1)

1

Nα
=: K7,1,t(H)

1

Nα
.

Finally, concerning the summand J4,t,N in (4.24), if 2t/Nα < 1
2 ,

J4,t,N = Nα

∫
R

∫
R

dxdyΨ(x)Ψ(y)
(2t−Nα|x− y + 1|)2H+1

8(2H + 1)
1{ t

aN
≤|x−y+1|<2 t

aN
}

= − 1

8(2H + 1)
Nα

∫ tN−α

0

dx

∫ x+1−tN−α

x+1−2tN−α
dy(2t−Nα(x− y + 1))2H+1.
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We obtain

J4,t,N = K8,1,t(H)
1

Nα
with K8,1,t(H) =

−t2H+3

8(2H + 2)(2H + 1)
. (4.27)

Consequently,

fH,N (1) = Lt(H)
1

Nα
with Lt(H) = K5,1,t(H) +K6,1,t(H) +K7,1,t(H) +K8,1,t(H). (4.28)

4.3. Renormalization of the wavelet variation

In order to analyze the asymptotic behavior of the wavelet variation (2.10), we will use the chaotic expression
of VN (t, a). We will work with multiple stochastic integrals with respect to the fractional-white noise WH .

Let E denote the space of all linear combinations of indicator functions 1[0,t]×A with t ≥ 0 and A ∈ Bb(R)
(the bounded Borel subsets of R). Let H be the completion of E with respect to the inner product

〈1[0,t]×A, 1[0,s]×A〉 = E(WH
t (A)WH

s (B)) = RH(t, s)λ(A ∩B), for every t, s ≥ 0, A,B ∈ Bd(Rn).

In particular (see [2])

〈ϕ,ψ〉H = H(2H − 1)

∫ t

0

∫ s

0

dv1dv2|v1 − v2|2H−2

∫
R

dxϕ(v1, x)ψ(v2, x)

for every ϕ,ψ ∈ H such that
∫ t

0

∫ s
0

dv1dv2|v1 − v2|2H−2
∫
R dx|ϕ(v1, x)ψ(v2, x)| <∞.

Let Iq be the multiple stochastic integral of order q with respect to the isonormal process (W (ϕ), ϕ ∈ H)
(see the Appendix or [3]). Then

u(t, x) =

∫ t

0

∫
R
G1(t− s, x− y)WH(ds,dy) = I1(gt,x)

where

gt,x(s, y) = G1(t− s, x− y)

and therefore the wavelet coefficient d(t, a, i) given by (2.9) can be written as

d(t, a, i) = I1(ft,a,i) with ft,a,i(s, y) =
√
a

∫
R
ψ(x)gt,a(x+i)(s, y)dx for every s > 0, y ∈ R. (4.29)

Then, by the product formula for multiple stochastic integrals (A.3), we have, for every t > 0, a > 0 and N ≥ 1

VN (t, a) =
1

Na

Na∑
i=1

(
I2(f⊗2

t,a,i) + Ed(t, a, i)2

Ed(t, a, i)2
− 1

)

=
1

NaD(t, a)

Na∑
i=1

I2(f⊗2
t,a,i) (4.30)
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with ft,a,i given by (4.29).
Let us compute the L2-norm of the random variable VN (t, a) given by (2.10). By using the isometry formula

for multiple integrals (A.2),

EVN (t, a)2 =
2

D(t, a)2N2
a

Na∑
i,j=1

〈ft,a,i, ft,a,j〉2H

=
2

D(t, a)2N2
a

Na∑
i,j=1

(Ed(t, a, i)d(t, a, j))
2
. (4.31)

Again we study the behavior of (4.31) as N →∞ when t varies with N and when t is fixed.

4.4. The moving time case: Proof of Proposition 3.1

Assume (2.11) and let us prove the limit theorem (3.1). The formula (4.31) becomes

EVN (tN , aN )2 =
2

N2
aN

D(tN , aN )−2

NaN∑
i,j=1

[
− tN

4
a2H+1
N gH(i− j) +

cH
2
a2H+2
N gH+ 1

2
(i− j)

]2

with gH given by (3.2). Thus, with gN,H defined by (4.6),

EVN (tN , aN )2 =
2

N2
aN

D(tN , aN )−2

×
[
t2N
16
a4H+2
N gN,H(aN ) +

c2H
4
a4H+4
N gN,H+ 1

2
(aN )

− tNcH
4

a4H+3
N

NaN∑
i,j=1

gH(i− j)gH+ 1
2
(i− j)

 .
We will use the notation fN ∼ gN which in our work means that the sequences fN and gN have the same limit
as N →∞.

Under assumption (2.11), we can estimate EVN (t, a)2 as follows

EVN (tN , aN )2 ∼ 32

K2
Ψ,H

N2(α−1)D(tN , aN )−2

[
1

16
N2β+(4H+2)αgN,H(aN )

+
c2H
4
Nα(4H+4)gN,H+ 1

2
(aN )− cH

4
Nβ+α(4H+3)

NaN∑
i,j=1

gH(i− j)gH+ 1
2
(i− j)


:= v1,N + v2,N + v3,N . (4.32)

Let us estimate the three summands above. By the estimate of D(tN , aN )−2 in Lemma 4.1 and by (4.7), we
have

v1,N =
2

K2
Ψ,H

N2(α−1)D(tN , aN )−2N2β+(4H+2)αN1−αgN,H(Nα)

∼ 2

K2
Ψ,H

N2(α−1)N−2β−2α(2H+1)N2β+(4H+2)αN1−αgN,H(Nα)
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∼ 2

K2
Ψ,H

∑
k∈Z

gH(k)2Nα−1

with KΨ,H from (3.3). Consequently

N1−αv1,N →N→∞
2

K2
Ψ,H

∑
k∈Z

gH(k)2. (4.33)

Let us look at the term v2,N . By (4.8),

v2,N ≤ CΨ,HN
α−1N−2β+2α ×

{
CΨ,H,Q if Q ≥ 2,

CΨ,H,QN
4H−1
a if Q = 1

≤ CΨ,HN
α−1

{
CΨ,H,QN

−2β+2α if Q ≥ 2,

CΨ,H,QN
−2β+2αN (4H−1)(1−α) = CΨ,H,QN

α−1Nα(3−4H)−2β+4H−1 if Q = 1, H < 3
4 .

Thus

N1−αv2,N ≤ CΨ,H,Q

{
N−2β+2α if Q ≥ 2,

Nα(3−4H)−2β+4H−1 if Q = 1, H < 3
4

→N→∞ 0 (4.34)

because α < 1 < β, α(3− 4H) < 0 and −2β + 4H − 1 < −2β + 2 < 0. Finally we look at v3,N . We can write

v3,N ≤ CΨ,HN
α−1Nα−β ×

{
CΨ,H,Q if Q ≥ 2,

CΨ,H,QN
4H−2
aN if Q = 1

≤ CΨ,HN
α−1

{
CΨ,H,QN

α−β if Q ≥ 2,

CΨ,H,QN
α−βN (4H−2)(1−α) = CΨ,H,QN

α−1Nα(3−4H)−β+4H−2 if Q = 1, H < 3
4 .

Thus

N1−αv3,N ≤ CΨ,H,Q

{
Nα−β if Q ≥ 2,

Nα(3−4H)−β+4H−2 if Q = 1, H < 3
4

→N→∞ 0 (4.35)

since α < β, α(3− 4H) < 0 and −β + 4H − 1 < −β + 1 < 0.
The bounds (4.33), (4.34), (4.35) lead to the desired conclusion.

4.4.1. The fixed time case: Proof of Proposition 3.4

If t is fixed, we can prove the approximation result (3.8). We have

EVN (t, aN )2 =
2

N2
aN

Na∑
i,j=1

(Ed(t, aN , i)d(t, aN , j))
2

Ed(t, a, i)2Ed(t, a, j)2

=
2

N2
aN

D(t, aN )−2
Na∑
i,j=1

(Ed(t, aN , i)d(t, aN , j))
2
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=
2

N2
aN

D(t, aN )−2
Na∑
i,j=1

(fH,N (i− j))2

with fH,N given by (4.21). Notice that fH,N (k) = fH,N (−k) and

fH,N (k) = 0 if |k| ≥ 2

by chosing N large enough. Since can be seen via (4.21), since the function Ψ has support included in [0, 1].
Therefore

EVN (t, aN )2 =
2

N2
aN

D(t, aN )−2
[
Na(fH,N (0))2 + 2(Na − 1)(fH,N (1))2

]
. (4.36)

We have fH,N (0) = D(t, aN ) and fH,N (1) was computed before. Using (4.28), (4.36) can be written as follows

EVN (t, aN )2 =
2

N2(1−α)
D(t, aN )−2

(
N1−αD(t, aN )2 +

2(N1−α − 1)L2
t (H)

D(t, aN )2N2α

)
(4.37)

with Lt(H) given by (4.28). Then

EVN (t, aN )2 ∼
(

2

N1−α +
4Lt(H)2

K1,t(H)2

1

N1+α

)
and the conclusion follows.

Remark 4.6. As already noticed in Remark 3.6, the renormalization of (2.10) is of the same order in both
cases (fixed time or moving time) although the correlation structure of the wavelet coefficient is different. On
the other hand, in the fixed time case, the diagonal term of EVN (t, aN )2 is dominant for the behavior of this
quantity as N →∞ (here is only one non-diagonal term which does not contribute to the limit), while when t
increases with N , all the diagonal and non-diagonal terms have contribution to the limit.

4.5. Central limit theorem and rate of convergence

We will show that, both in the moving time and fixed time cases, the renormalized wavelet variation satisfies
a central limit theorem if Q ≥ 2 or Q = 1, H < 3

4 .
Our main tool is the following result (see Thm. 5.2.6 and Cor. 5.2.10 in [16]). Recall that by d we denote

the distance between distributions of random variable and below it can be each of the following distances:
Kolmogorov, total variation, Wasserstein or Fortet-Mourier (see [16]).

Theorem 4.7. Let (FN )N≥1 be a sequence of random variables in the qth Wiener chaos (q ≥ 1) with respect
to an isonormal process indexed by the Hilbert space H. Assume that EF 2

N →N→∞ σ2 > 0. Then the sequence
(FN )N≥1 converges in law to the standard normal random variable Z if and only if ‖DFN‖2H converges in L2(Ω)
as N →∞ to qσ2. In this case

d(FN , Z) ≤ C
(√

V ar (‖DFN‖2H) +
∣∣EF 2

N − σ2
∣∣) .

4.6. The moving time: Proof of Theorems 3.2 and 3.3

Consider the sequence (FN )N≥1 given by (3.4) and recall that from Proposition 3.1

EF 2
N →N→∞ 1.
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Also, by (4.30) we have the following chaos expansion of FN , for every N ≥ 1, with ft,a,i given by (4.29),

FN = K
− 1

2

0,Ψ,HN
α−1
2 I2

NaN∑
i=1

f⊗2
tN ,aN ,i

E(d(tN , aN , i)2

 = K
− 1

2

0,Ψ,HN
α−1
2 D(tN , aN )−1I2

NaN∑
i=1

f⊗2
tN ,aN ,i

 . (4.38)

So, FN is an element of the second Wiener chaos (with respect to the Gaussian noise WH introduced in Section
4.3) for every N ≥ 1 and we may apply Theorem 4.7 in order to check its asymptotic behavior in distribution.

Proof of Theorem 3.2. By taking the Malliavin derivative with respect to fractional-white noise WH in (4.38)
(see formula (A.4)),

DFN = 2K
− 1

2

0,Ψ,HN
α−1
2 D(tN , aN )−1

NaN∑
i=1

I1(ftN ,aN ,i)ftN ,aN ,i

and, if H is the Hilbert space associated with the fractional-white Gaussian noise (see the beginning of Section
4.3),

‖DFN‖2H = 4K−1
0,Ψ,HN

α−1D(tN , aN )−2

NaN∑
i,j=1

I1(ft,a,i)I1(ft,a,j)〈ft,a,i, ft,a,j〉H

= 4K−1
0,Ψ,HN

α−1D(tN , aN )−2

NaN∑
i,j=1

I2(ft,a,i ⊗ ft,a,j)〈ft,a,i, ft,a,j〉H

+4K−1
0,Ψ,HN

α−1D(tN , aN )−2

NaN∑
i,j=1

〈ft,a,i, ft,a,j〉2H

= 4K−1
0,Ψ,HN

α−1D(tN , aN )−2

NaN∑
i,j=1

I2(ft,a,i ⊗ ft,a,j)〈ft,a,i, ft,a,j〉H + E‖DFN‖2H

with ft,a,i from (4.29). Notice that, since FN belongs to the second Wiener chaos, we have E‖DFN‖2H = 2EF 2
N .

By Theorem 4.7,

d(FN , Z) ≤ c
(√

V ar (‖DFN‖2H) + E‖DFN‖2H − 2

)
so

d(FN , Z) ≤ c(
√
T1,N + T2,N )

where

T1,N = E

4K−1
0,Ψ,HN

α−1D(tN , aN )−2

NaN∑
i,j=1

I2(ft,a,i ⊗ ft,a,j)〈ft,a,i, ft,a,j〉H

2

(4.39)
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and

T2,N = E‖DFN‖2H − 2 = 4K−1
0,Ψ,HN

α−1D(tN , aN )−2

NaN∑
i,j=1

〈ft,a,i, ft,a,j〉2H − 2. (4.40)

Let us first estimate T2,N . Since

〈ftN ,aN ,iftN ,aN ,j〉H = Ed(tN , aN , i)d(tN , aN , j)

we can write, as in (4.32)

T2,N = 4K−1
0,Ψ,HN

α−1D(tN , aN )−2

[
1

16
N2β+(4H+2)αgN,H(aN )

+
c2H
4
Nα(4H+4)gN,H+ 1

2
(aN )− cH

4
Nβ+α(4H+3)

NaN∑
i,j=1

gH(i− j)gH+ 1
2
(i− j)

− 2

:= T2,1,N + T2,2,N + T2,3,N .

First, we analyze the term T2,1,N . We have

T2,1,N = 4K−1
0,Ψ,HN

α−1D(tN , aN )−2 1

16
N2β+(4H+2)αgN,H(aN )− 2

=
1

4
N2β+(4H+2)αK−1

0,Ψ,HD(tN , aN )−2
∑
k∈Z

gH(k)21{|k|≤NaN }
NaN − |k|
NaN

− 2

=
1

4
K−1

0,Ψ,HN
2β+(4H+2)αD(tN , aN )−2

∑
k∈Z

gH(k)2

+
1

4
K−1

0,Ψ,HN
2β+(4H+2)αD(tN , aN )−2

(∑
k∈Z

gH(k)21{|k|≤NaN }
NaN − |k|
NaN

−
∑
k∈Z

gH(k)2

)
− 2

and since by (4.4)

D(tN , aN ) = Ed(tN , aN , i)
2 = −cH

2
KΨ,H+ 1

2
N (2H+2)α +

1

4
KΨ,HN

β+(2H+1)α,

we obtain

T2,1,N =
1

4
K−1

0,Ψ,HN
2β+(4H+2)α

(
1

4
KΨ,HN

β+(2H+1)α

)−2∑
k∈Z

gH(k)2

+
1

4
K−1

0,Ψ,HN
2β+(4H+2)α

×

[(
−cH

2
KΨ,H+ 1

2
N (2H+2)α +

1

4
KΨ,HN

β+(2H+1)H

)−2

−
(

1

4
KΨ,HN

β+(2H+1)α

)−2
]∑
k∈Z

gH(k)2

+
1

4
K−1

0,Ψ,HN
2β+(4H+2)αD(tN , aN )−2

(∑
k∈Z

gH(k)21{|k|≤NaN }
NaN − |k|
NaN

−
∑
k∈Z

gH(k)2

)
− 2.
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The first term in the above expression vanishes with 2 so it remains

T2,1,N =
1

4
K−1

0,Ψ,HN
2β+(4H+2)α

×

[(
−cH

2
KΨ,H+ 1

2
N (2H+2)α +

1

4
KΨ,HN

β+(2H+1)α

)−2

−
(

1

4
KΨ,HN

β+(2H+1)α

)−2
]∑
k∈Z

gH(k)2

+
1

4
K−1

0,Ψ,HN
2β+(4H+2)αD(tN , aN )−2

(∑
k∈Z

gH(k)21{|k|≤NaN }
NaN − |k|
NaN

−
∑
k∈Z

gH(k)2

)
.

We have the following bound for the first summand in T2,1,N∣∣∣∣∣
(
−cH

2
KΨ,H+ 1

2
N (2H+2)α +

1

4
KΨ,HN

β+(2H+1)α

)−2

−
(

1

4
KΨ,HN

β+(2H+1)α

)−2
∣∣∣∣∣

≤ cNα−βN2β+(4H+2)α.

To obtain a bound for the second term in the expression of T2,1,N , we write
∑
k∈Z gH(k)2 =∑

k∈Z gH(k)21{|k|≤NaN } +
∑
k∈Z gH(k)21{|k|>NaN } and using the fact that |gH | is bounded by |k|4H−4Q we

get that ∣∣∣∣∣D(tN , aN )−2

(∑
k∈Z

gH(k)21{|k|≤NaN }
NaN − |k|
NaN

−
∑
k∈Z

gH(k)2

)∣∣∣∣∣
≤ cD(tN , aN )−2N8H−8Q+2

aN = cN−2β−2α(2H+1)+(1−α)(8H−8Q+2).

Therefore

|T2,1,N | ≤ cNα−β . (4.41)

For T2,2,N we have by (4.8) and Lemma 4.1

|T2,2,N | ≤ cD(tN , aN )−2Nα−1Nα(4H+4)gH, 12 (aN )

≤ D(tN , aN )−2Nα(4H+4)

{
C, if Q ≥ 2

N (1−α)(4H−1), if Q = 1

≤ c

{
N2α−2β if Q ≥ 2

N2α−2βN (1−α)(4H−1) if Q = 1.

Regarding T2,3,N we use (4.8) and Lemma 4.1 to get that

|T2,3,N | ≤ cD(tN , aN )−2Nα−1Nα(4H+3)

NaN∑
i=1

gH(i− j)gH+ 1
2
(i− j)

≤ D(tN , aN )−2Nα(4H+3)

{
C, if Q ≥ 2

N (1−α)(4H−2), if Q = 1
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≤ c

{
Nα−β if Q ≥ 2

Nα−βN (1−α)(4H−2) if Q = 1.

Combining (4.41), (4.42) and (4.42), we have the following bound for (4.40):

|T2,N | ≤

{
CNα−β if Q ≥ 2

Nα−βN (1−α)(4H−2) if Q = 1.
(4.42)

Concerning T1,N , by the isometry of multiple integrals

T1,N = V ar(‖DFN‖2H) = E
(
|‖DFN‖2H −E‖DFN‖2H

)2
= E

4K−1
0,Ψ,HN

α−1D(tN , aN )−2

NaN∑
i,j=1

I2(ftN ,aN ,i ⊗ ftN ,aN ,j)〈ftN ,aN ,i, ftN ,aN ,j〉H

2

= 16K−2
0,Ψ,HN

2(α−1)D(tN , aN )−4

E

 NaN∑
i,j,k,l=1

I2(ftN ,aN ,i ⊗ ftN ,aN ,j)I2(ftN ,aN ,k ⊗ ftN ,aN ,l)〈ftN ,aN ,i; ftN ,aN ,j〉H〈ftN ,aN ,k, ftN ,aN ,l〉H


= 32K−2

0Ψ,HN
2(α−1)D(tN , aN )−4

NaN∑
i,j,k,l=1

〈ft,a,i; ft,a,j〉H〈ft,a,k; ft,a,l〉H〈ftN ,aN ,i, ftN ,aN ,k〉H〈ft,a,j ; ft,a,l〉H.

Recall that for all integers p, q we have (see relation (4.5)) 〈ft,a,p; ft,a,q〉 = cH
2 a

2H+2
N gH+ 1

2
(p − q) −

tN
4 a

2H+1
N gH(p− q). Hence,

T1,N = 32K−2
0,Ψ,HN

2(α−1)D(tN , aN )−4

NaN∑
i,j,k,l=1

[
cH
2
a2H+2
N gH+ 1

2
(i− j)− tN

4
a2H+1
N gH(i− j)

]

×
[
cH
2
a2H+2
N gH+ 1

2
(k − l)− tN

4
a2H+1
N gH(k − l)

] [
cH
2
a2H+2
N gH+ 1

2
(i− k)− tN

4
a2H+1
N gH(i− k)

]
×
[
cH
2
a2H+2
N gH+ 1

2
(j − l)− tN

4
a2H+1
N gH(j − l)

]
=

5∑
i=1

T1,i,N .

Above we denoted by T1,1,N a product that depends only on functions gH and T1,2,N is a product that depends
only on one function gH (see (3.2)) and three functions gH+ 1

2
. T1,3,N is the product of two functions gH and

two gH+ 1
2
. As well, T1,4,N contains three gH and one gH+ 1

2
while T1,5,N contains the four functions gH+ 1

2
. To

study each term we will use the same technique of proof of the Theorem 7.3.1 in [16] or Lemma 3 in [12]. Let
gH,N (k) := |gH(k)|1{|k|≤Na} (this is not the same as gN,H in (4.6)) and gH+ 1

2 ,N
(k) := |gH+ 1

2
(k)|1{|k|≤Na}.

Let u, v : Z→ R be two sequences, we define their convolution by

(u ∗ v)(k) =
∑
n∈Z

u(n)v(k − n).
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We will need Young’s inequality, which can be written, for s, p, q ≥ 1 such that 1
s + 1 = 1

p + 1
q as

‖u ∗ v‖ls(Z) ≤ ‖u‖lp(Z)‖v‖lq(Z).

Now we can estimate each term T1,i,N , for i = 1, . . . , 5. First

|T1,1,N | =

∣∣∣∣∣∣32K−2
0 N2(α−1) t

4
N

44
a

4(2H+1)
N D(tN , aN )−4

NaN∑
i,j,k,l=1

gH(i− j)gH(k − l)gH(i− k)gH(j − l)

∣∣∣∣∣∣
≤ CNα(8H+6)−2+4βD(tN , aN )−4

NaN∑
j,k=1

∑
i,l∈Z

gH,N (i− j)gH,N (k − l)gH,N (i− k)gH,N (j − l)

= CNα(8H+6)−2+4βD(tN , aN )−4

NaN∑
j,k=1

(gH,N ∗ gH,N )(k − j)2

= CNα(8H+6)−2+4βN1−αD(tN , aN )−4‖gH,N ∗ gH,N‖2l2(Z)

≤ CNα(8H+5)−1+4βD(tN , aN )−4‖gH,N‖4
l
4
3 (Z)

.

where the last inequality follows from Young inequality

|T1,1,N | ≤ CNα(8H+5)−1+4βD(tN , aN )−4

(
N∑

k=−N

|gH(k)|4/3
)3

.

The series
∑
k∈Z |gH(k)|4/3 converges because |gH(k)| is bounded, for k large, by C|k|4H−4Q, see Lemma 4.3.

Finally,

|T1,1,N | ≤ CNα−1. (4.43)

Next, we have

T1,2,N = −CN2(α−1)D(tN , aN )−4Nβ+α(8H+7)

NaN∑
i,j,k,l=1

gH(i− j)gH+ 1
2
(k − l)gH+ 1

2
(i− k)gH+ 1

2
(j − l).

We apply the same idea as above

|T1,2,N | ≤ CN2(α−1)D(tN , aN )−4NβNα(8H+7)

NaN∑
i,j,k,l=1

gH(i− j)gH+ 1
2
(k − l)gH+ 1

2
(i− k)gH+ 1

2
(j − l)

≤ CNβ−2+α(8H+9)D(tN , aN )−4

NaN∑
j,k=0

∑
i,l∈Z

gH,N (i− j)gH+ 1
2 ,N

(k − l)gH+ 1
2 ,N

(i− k)gH+ 1
2 ,N

(j − l)

≤ CNβ−1+α(8H+8)D(tN , aN )−4
∑
k∈Z

(gH,N ∗ gH+ 1
2 ,N

)(k)(gH+ 1
2 ,N
∗ gH+ 1

2 ,N
)(k)

≤ CNβ−1+α(8H+8)D(tN , aN )−4‖gH,N ∗ gH+ 1
2 ,N
‖l2(Z)‖gH+ 1

2 ,N
∗ gH+ 1

2 ,N
‖l2(Z)

≤ CNβ−1+α(8H+8)D(tN , aN )−4‖gH,N‖
l
4
3 (Z)
‖gH+ 1

2 ,N
‖3
l
4
3 (Z)
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= CNβ−1+α(8H+8)D(tN , aN )−4

(
N∑

k=−N

|gH,N |
4
3

) 4
3
(

N∑
k=−N

|gH+ 1
2 ,N
| 43
) 9

4

≤ CN4α−3β−1

(
N∑

k=−N

|gH,N |
4
3

) 3
4
(

N∑
k=−N

|gH+ 1
2 ,N
| 43
) 9

4

.

Now, by Lemma 4.3, gH+ 1
2
(k) is bounded for k large by C|k|4H+2−4Q and this yields to

N∑
k=−N

|gH+ 1
2 ,N
| 43 ≤


O(1) if Q ≥ 2 and Q = 1, H < 5

16

O(log(N)) if Q = 1, H = 5
16

O(N
16H−5

3 ) if Q = 1, H > 5
16 .

Recall that 1
2 < H < 1, hence

|T1,2,N | ≤ C

{
N4α−3β−1 if Q ≥ 2

N
3(16H−5)

4 +4α−3β−1 if Q = 1, H ∈ ( 1
2 ,

3
4 ).

(4.44)

In the same way,

|T1,3,N | = C

∣∣∣∣∣∣N2(α−1)Nα(8H+6)+2βD(tN , aN )−4

NaN∑
i,j,k,l=1

gH(i− j)gH(k − l)gH+ 1
2
(i− k)gH+ 1

2
(j − l)

∣∣∣∣∣∣
≤ CN3α−2β−1

(
N∑

k=−N

|gH,N |
4
3

) 3
2
(

N∑
k=−N

|gH+ 1
2 ,N
| 43
) 3

2

.

Using the previous case we have

T1,3,N ≤ C

{
N3α−2β−1 if Q ≥ 2

N
16H−5

2 +3α−2β−1 if Q = 1, H ∈ ( 1
2 ,

3
4 )

(4.45)

and as well,

|T1,4,N | = C

∣∣∣∣∣∣N2(α−1)Nα(8H+5)+3βD(tN , aN )−4

NaN∑
i,j,k,l=1

gH(i− j)gH(k − l)gH(i− k)gH+ 1
2
(j − l)

∣∣∣∣∣∣
≤ CN2α−β−1

(
N∑

k=−N

|gH,N |
4
3

) 9
4
(

N∑
k=−N

|gH+ 1
2 ,N
| 43
) 3

4

which implies that

|T1,4,N | ≤ C

{
N2α−β−1 if Q ≥ 2

N
16H−5

4 +α−β−1 if Q = 1, H ∈ ( 1
2 ,

3
4 )
. (4.46)



WAVELET ANALYSIS FOR THE SOLUTION TO THE WAVE EQUATION 245

It remains to look at T1,5,N ,

|T1,5,N | = C

∣∣∣∣∣∣N2(α−1)N4α(2H+2)D(tN , aN )−4

NaN∑
i,j,k,l=1

gH+ 1
2
(i− j)gH+ 1

2
(k − l)gH+ 1

2
(i− k)gH+ 1

2
(j − l)

∣∣∣∣∣∣
≤ CN5α−4β−1

(
N∑

k=−N

|gH+ 1
2 ,N
| 43
)3

and this gives us

|T1,5,N | ≤

{
N5α−4β−1 if Q ≥ 2

N16H+5α−4β−6 if Q = 1, H ∈ ( 1
2 ,

3
4 ).

Combining (34)−(38) we see that T1,1,N is the biggest term and finally we get a simple estimate for T1,N

|T1,N | ≤ CNα−1. (4.47)

By (4.42) and (4.47), we obtain the conclusion.

Proof of Theorem 3.3. By Theorem 3.2 (applied to the scale LaN , L = 1, . . . , d), we know that the each com-
ponent of the vector

(
N1−αVn(tN , LaN )

)
L=1,...,d

converges in distribution, as N →∞, to a centered Gaussian

random variable. By the main result in [19], it suffices to show that for every L1, L2 = 1, . . . , d

N1−αEVN (tN , L1aN )VN (tN , L2aN )

converges as N →∞ to ΓL1,L2 . We have

N1−αEVN (tN , L1aN )VN (tN , L2aN )

=
2

D(tN , L1aN )D(tN , L2aN )
N1−α

NL1aA∑
i=1

NL2aA∑
j=1

(Ed(tN , L1aN , i)d(tN , L2aN , j))
2

where

Ed(tN , L1aN , i)d(tN , L2aN , j) =
cH
2
a2H+2
N gL1,L2,H+ 1

2
(i, j)− tN

4
a2H+1
N gL1,L2,H(i, j)

and

gL1,L2,H(i, j) =

∫
R

∫
R

dxdyΨ(x)Ψ(y)|L1x− L2y + L1 − L2j|2H .

We know (see Sect. 3.2 in [7] or Prop. 2.3 in [5]), that for every i, j large and for H ∈
(

1
2 ,

3
2

)
,

|gL1,L2,H(i, j)| ≤ C(1 + |L1i− L2j|2H−2Q) (4.48)
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and if H ∈
(

1
2 , 1
)
,

N1−α
NL1aN∑
i=1

NL2aN∑
j=1

(gL1,L2,H(i, j))
2 →N→∞ C(L1, L2, H) (4.49)

with C(L1, L2, H) being explicit constant. From Lemma 4.1, (4.49) and (4.48) we obtain the conclusion by
following the proof of Proposition 3.1.

4.6.1. The case of fixed time: Proof of Theorem 3.5

Now consider the random sequence (GN )N≥1 defined by (3.9). It satisfies EG2
N → 1 as N →∞ and it admits

the following chaos expansion

GN =:
1√
2
N

1−α
2 V (t, aN ) =

1√
2
N

1−α
2 D(t, aN )−1I2

(
N∑
i=1

f⊗2
t,aN ,i

)
. (4.50)

From (4.50) and (A.4), the Malliavin derivative of GN writes as

DGN =
1√
2
N

1−α
2 d(t, aN )−2I1

(
N∑
i=1

ft,aN ,i

)
ft,aN ,i

so

‖DGN‖2H

= 2Nα−1D(t, aN )−2

NaN∑
i,j=1

I2(ft,aN ,i ⊗ ft,aN ,i)ft,aN ,j + 2Nα−1D(t, aN )−2
N∑

i,j=1

〈(ft,aN ,i, ft,aN ,j〉)2

= 2Nα−1D(t, aN )−2

NaN∑
i,j=1

I2(ft,aN ,i ⊗ ft,aN ,i)ft,aN ,j + E‖DGN‖2.

From Theorem 4.7,

d(GN , Z) ≤ c

(√
V ar (‖DGN‖2H) + E‖DGN |2H − 2

)
=: c(

√
T1,N + T2,N ).

We analyze first T1,N ,

|T1,N | =

∣∣∣∣∣∣8N2(α−1)D(t, aN )−4

NaN∑
i,j,k,l=1

fH,N (i− j)fH,N (k − l)fH,N (i− k)fH,N (j − l)

∣∣∣∣∣∣
≤ CNα−1D(t, aN )−4‖f̃H,N‖4l4/3(Z)

≤ CNα−1D(t, aN )−4

 NaN∑
k=−NaN

|fH,N (k)|4/3
3
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= CNα−1D(t, aN )−4

2

NaN∑
k=1

|fH,N (k)|4/3 + |fH,N (0)|4/3
3

= CNα−1D(t, aN )−4
(

2|fH,N (1)|4/3 + |fH,N (0)|4/3
)3

= CNα−1D(t, aN )−4

(
2
|K3,t|4/3

N
4α
3

+ |D(t, aN )|4/3
)3

≤ CNα−1D(t, aN )−4

(
8
|K3,t|4

N4α
+ 4|D(t, an)|4

)
≤ C 1

N1−α .

For T2,N we can write

|T2,N | =

∣∣∣∣∣∣2Nα−1D(t, aN )−2

NaN∑
i,j=1

〈(ft,aN ,i; ft,aN ,j〉)2 − 2

∣∣∣∣∣∣
=
∣∣2Nα−1D(t, aN )−2

(
NaN fH,N (0)2 + 2(NaN − 1)fH,N (1)2

)
− 2
∣∣

=

∣∣∣∣4Nα−1D(t, aN )−2(NaN − 1)
K2

3

N2α

∣∣∣∣ ≤ C

N2α
.

Therefore we obtain

d(GN , Z) ≤ c

(√
V ar (‖DFN‖2H) + E‖DFN‖2H − 2

)
= c

(
1

N
1−α
2

+
1

N2α

)
.

5. Estimation of the Hurst parameter

We will apply our theoretical results in Section 3 in order to construct an estimator for the Hurst parameter
of the solution to the stochastic wave equation (2.1). The estimator will be constructed by using the wavelet
variation (2.10). We will assume that the solution is observed at discrete points in space xi = i, i = 1, . . . , N and
at a certain time t (fixed or depending on N). Different estimators (but all of them constructed via the wavelet
variation) are obtained in these two situations treated in our work (moving or fixed time). While for fixed
time the logarithm of the variance of the wavelet coefficient depends linearly on H (Lem. 4.2), a linear log–log
regression will give the explicit form of the estimator. For fixed time, this variance of the wavelet coefficient have
a more complex dependence on the Hurst parameter (Prop. 4.4) and a different argument will be employed.

5.1. The moving time case

First we introduce a discrete version of the wavelet variation (2.10). Then we define an estimator in terms of
the discrete wavelet variation and we prove its asymptotic properties.

5.2. Discretization of the wavelet variation

We will use an estimator constructed by using the wavelet variation (2.10) or more precisely, by using its
discretized version defined below. Notice that the wavelet coefficient d(t, a, i) is defined as a continuous integral
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(see (2.9)) and it cannot be observed directly when the process u is observed. Therefore, by approximating the
integral in (2.9) by Riemann sums, we define the discrete wavelet coeffcient, for a > 0, t > 0,

eN (t, a, i) =
1√
a

N∑
k=1

Ψ

(
k

a
− i
)
u(t, k). N ≥ 1.

Since Ψ has its support contained in the interval [0, 1], the above coefficient can also expressed as

eN (t, a, i) =
1√
a

[a]∑
k=0

Ψ

(
k

a

)
u(t, k + ai). (5.1)

Let us also define the discrete version of the wavelet variation by setting

V̂N (t, a) =
1

Na

Na∑
i=1

(
ẽ(t, a, i)2 − 1

)
(5.2)

with, see notation (4.1),

ẽN (t, a, i) =
eN (t, a, i)

(E(d(a, t, i))2)
1
2

=
1√

D(t, a)
eN (t, a, i).

In a first step, we will show that the sequence V̂N (tN , aN ) has the same limit behavior in distribution as
VN (tN , aN ) when N goes to infinity. We need to assume some differentiability of the mother wavelet (several
examples satisfy this assumption, among others the Daubechies wavelet or the mexican hat wavelet, see [5] or
[7]).

Proposition 5.1. Suppose that Ψ ∈ Cm(R) with m > Hβ
α . Assume (2.11) with α ∈

(
1
2 , 1
)

and let

VN (tN , aN ), V̂N (tN , aN ) be given by (2.10) and (5.2) respectively. Then

E
∣∣∣N 1−α

2

(
VN (tN , aN )− V̂N (tN , aN )

)∣∣∣→N→∞ 0.

Proof. We start by estimating the difference between the coefficient d(tN , aN , i) and its discrete counterpart
eN (tN , aN , i) with i = 1, . . . , NaN and with tN , aN as in (2.11). Let us compute the L2(Ω)-norm of this difference.
We write

E (d(tn, aN , i)− eN (tN , aN , i))
2

= Ed(tN , aN , i)
2 − 2Ed(tN , aN , i)eN (tN , aN , i) + EeN (tN , aN , i)

2.

The first summand Ed(tN , aN , i)
2 has already been computed in (4.3). Let us compute the other two terms.

For N ≥ 1 and i = 1, . . . , NaN we have from the covariance formula (2.6)

EeN (tN , aN , i)
2 =

1

aN

[aN ]∑
k,l=0

Ψ

(
k

aN

)
Ψ

(
l

aN

)
Eu(tN , k + aN i)u(tN , l + aN i) (5.3)

=
1

aN

[aN ]∑
k,l=0

Ψ

(
k

aN

)
Ψ

(
k

aN

)[
cH
2
|k − l|2H+1 − tN

4
|k − l|2H +

t2H+1
N

2(2H + 1)

]
.
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We used the fact that |k − l| ≤ aN = Nα < tN = Nβ under (2.11), so the last summand in (2.6) vanishes. We
also have from (2.6), (2.9) and (5.1)

Ed(tN , aN , i)eN (tN , aN , i) (5.4)

=

[aN ]∑
k=0

Ψ

(
k

aN

)∫
R

dxΨ(x)Eu(tN , k + aN i)u(tN , aN (x+ i))

=

[aN ]∑
k=0

Ψ

(
k

aN

)∫
R

dxΨ(x)

[
cH
2
|k − aNx|2H+1 − tN

4
|k − aNx|2H +

t2H+1
N

2(2H + 1)

]
.

Via (4.3), (5.3) and (5.4),

E (d(tn, aN , i)− eN (tN , aN , i))
2

=
cH
2
a2H+2
N

 1

a2
N

[aN ]∑
k,l=0

Ψ

(
k

aN

)
Ψ

(
l

aN

) ∣∣∣∣k − laN

∣∣∣∣2H+1

+

∫
R

∫
R

dxdyΨ(x)Ψ(y)|x− y|2H+1

−2
1

aN

[aN ]∑
k=0

Ψ

(
k

aN

)∫
R

dxΨ(x)
∣∣∣k − aN

x

∣∣∣2H+1


+
cH
2
a2H+1
N

 [aN ]∑
k,l=0

Ψ

(
k

aN

)
Ψ

(
l

aN

) ∣∣∣∣k − laN

∣∣∣∣2H +

∫
R

∫
R

dxdyΨ(x)Ψ(y)|x− y|2H

− 2
1

aN

[aN ]∑
k=0

Ψ

(
k

aN

)∫
R

dxΨ(x)
∣∣∣k − aN

x

∣∣∣2H


+
t2H+1
N

2(2H + 1)

1

aN

[aN ]∑
k,l=0

Ψ

(
k

aN

)
Ψ

(
l

aN

)
. (5.5)

Now we use the following bounds (we refer to [5] for their proofs, see also [7]) for N large∣∣∣∣∣∣ 1

a2
N

[aN ]∑
k,l=0

Ψ

(
k

aN

)
Ψ

(
l

aN

) ∣∣∣∣k − laN

∣∣∣∣2H − ∫
R

∫
R

dxdyΨ(x)Ψ(y)|x− y|2H
∣∣∣∣∣∣ ≤ C 1

aN
, (5.6)

and ∣∣∣∣∣∣ 1

aN

[aN ]∑
k=0

Ψ

(
k

aN

)∫
R

dxΨ(x)
∣∣∣k − aN

x

∣∣∣2H − ∫
R

∫
R

dxdyΨ(x)Ψ(y)|x− y|2H
∣∣∣∣∣∣ ≤ C 1

aN
(5.7)

and, for Ψ of class Cm(R), ∣∣∣∣∣∣ 1

aN

[aN ]∑
k=0

Ψ

(
k

aN

)∣∣∣∣∣∣ ≤ C 1

amN
. (5.8)
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with C > 0 not depending on N . By using the inequalities (5.6), (5.7) and (5.8) in (5.5), we obtain

E (d(tn, aN , i)− eN (tN , aN , i))
2 ≤ C

[
a2H+1
N + tNa

2H
N + t2H+1

N a1−2m
N

]
≤ C

[
N (2H+1)α +Nβ+2Hα +N (2H+1)β+α(1−2m)

]
. (5.9)

For the renormalized coefficients, we have the estimate

E
(
d̃(tn, aN , i)− ẽN (tN , aN , i)

)2

= D(tN , aN )−1E (d(tn, aN , i)− eN (tN , aN , i))
2

≤ CN−β+(2H+1)α
[
N (2H+1)α +Nβ+2Hα +N (2H+1)β+α(1−2m)

]
= C

[
N−β +N−α +N2Hβ−α(2m+2H)

]
.

If m > Hβ
α , then for all i = 1, . . . , NaN ,

E
(
d̃(tn, aN , i)− ẽN (tN , aN , i)

)2

≤ CN−α. (5.10)

Finally, we regard the L1(Ω)-norm of the difference VN (tN , aN ) − V̂N (tN , aN ). By using Cauchy-Scwarz
inequality as proceeding as in the the proof of Lemma 1 in [7], we can write, with C1, C2 > 0,

E
∣∣∣VN (tN , aN )− V̂N (tN , aN )

∣∣∣
≤ C1

 1

NaN

NaN∑
i=1

E
(
d̃(tN , aN , i)− ẽN (tN , aN , i)

)2

 1
2

×

C2 + 2
1

NaN

NaN∑
i=1

E
(
d̃(tN , aN , i)− ẽN (tN , aN , i)

)2

 1
2

and by (5.10),

E
∣∣∣VN (tN , aN )− V̂N (tN , aN )

∣∣∣ ≤ CN−α2 (C +
1

Nα

) 1
2

≤ CN−α2 .

Consequently,

E
∣∣∣N 1−α

2

(
VN (tN , aN )− V̂N (tN , aN )

)∣∣∣ ≤ CN 1−α
2 N−

α
2 = CN

1
2−α

and the conclusion is obtained since α > 1
2 .

As a consequence of the above result, the discrete wavelet variation V̂N (tN , aN ) has the same limit in law as
VN (tN , aN ).

Corollary 5.2. Let the assumptions in Proposition 5.1 prevail and let V̂N be given by (5.2). Then the d-

dimensional random vector
(
N

1−α
2 V̂N (tN , LaN )

)
L=1,...,d

converges in distribution, as N → ∞, to a centered
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d-dimensional Gaussian vector with covariance matrix Γ = (ΓL1,L2
)L1,L2=1,...,d where the matrix Γ is given by

(3.5).

Proof. The proof immediately follows from Theorem 3.3 and Proposition 5.1.

5.3. The definition of the estimator

Let us denote, for t > 0, a > 0

SN (t, a) :=
1

Na

Na∑
i=1

d(t, a, i)2. (5.11)

Notice that the sequence SN (t, a) is related to the wavelet variation VN (t, a) in (2.10) as follows

SN (t, a) = D(t, a) (VN (t, a) + 1) (5.12)

with D(t, a) defined by (4.1). Let d ≥ 1 and assume (2.11). By taking the expectation in (5.11) (note that
EVN (tN , aN ) = 0), we have, for every L = 1, . . . , d, by using Lemma 4.1,

N−β−(2H+1)αESN (tN , LaN ) = N−β−(2H+1)αD(tN , LaN ) →
N→+∞

1

4
KΨ,HL

2H+1 > 0

with KΨ,H from Lemma 4.1. We write the above relation for tN = tLaN (which means that we replace tN = Nβ

by LβNαβ in (4.3). To do this, we will assume that in the sequel αβ > 1 and with this assumption all our
theoretical results (such as Thm. 3.3) can be applied. So

N−αβ−(2H+1)αESN (tLaN , LaN ) = N−αβ−(2H+1)αD(tLaN , LaN ) →
N→+∞

1

4
KΨ,HL

β+2H+1 > 0. (5.13)

The above relation (5.13) implies, for N ≥ 1,

log E(SN (tLaN , LaN )) = log(D(tLaN , LaN )

= (β + 2H + 1)α logN + (β + 2H + 1) logL+ log

(
1

4
KΨ,H

)
+ log(1 + εN )

= (β + 2H + 1)(α logN + logL) + log

(
1

4
KΨ,H

)
+ log(1 + εN )

= (β + 2H + 1) log(LaN ) + log

(
1

4
KΨ,H

)
+ log(1 + εN ) (5.14)

where (εN )N≥1 is a a deterministic sequence defined by, for every N ≥ 1,

εN =

(
1

4
KΨ,HL

2H+1

)−1

N−β−(2H+1)αESN (tN , LaN )− 1

=

(
1

4
KΨ,HL

2H+1

)−1

N−αβ−(2H+1)αD(tLaN , LaN )− 1→N→∞ 0.
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Let us also introduce the discretized counterpart of SN (t, a), i.e.

ŜN (t, a) :=
1

Na

Na∑
i=1

eN (t, a, i)2 = D(taN , aN )(1 + V̂N (taN , aN )) (5.15)

with eN from (5.1).
The above relation (5.14) inspires the following definition of the estimator for the Hurst parameter

2ĤN + β + 1 = (XTX)−1XTY (5.16)

where T denotes the transpose and with the notation

X = log(LaN )L=1,...,d = (α logN + logL)L=1,...,d and Y =
(

log ŜN (tLaN , LaN )
)
L=1,...,d

. (5.17)

Equivalently, we have

ĤN =
1

2
(XTX)−1XTY − 1

2
=

1

2

d∑
L=1

log ŜN (tLaN , LaN ) log(LaN )∑d
L=1(log(LaN ))2

− 1

2
− β

2
(5.18)

with X,Y from (5.17).

Remark 5.3. 1. The following heuristics leads to the expression (5.16):

• We approximate E(SN (tLaN , LaN ) by SN (tLaN , LaN ) and then logSN (tLaN , aN ) by log ŜN (tLaN , aN ).
• In the expression

log(ŜN (tLaN , LaN )) ∼ (β + 2H + 1) log(LaN ) + log

(
1

4
KΨ,H

)
+ log(1 + εN )

we use a log–log regression of (log(SN (tLaN , LaN ))L=1,...,d on (logLaN )L=1,...,d = (α + logL)L=1,...,d

i.e. we minimize with respect to H ∈
(

1
2 , 1
)

the function

f(H) =

d∑
L=1

(logSN (tLaN , LaN )− (2H + 1 + β) log(LaN ))
2
.

2. Notice that the estimator (5.18) is expressed in terms of the sequence (5.15) which depends on the
discrete wavelet coefficients eN . Therefore, the estimator can be computed from the data, that is, from
the observations u(t, k), k = 1, 2, . . . , N with t = taN = Nαβ with αβ > 1. So, if we have at our disposal
N observations in space, one needs to be able to observe them at time Nαβ . Recall that in practice our
wave equation describes the vertical displacement of a vibrating string under a random force. This means
that the observation time of the vibrating time should be sufficiently long and it is related to the number
of spatial observations.

Using Theorem 3.3, we can deduce the limit behavior of the estimator ĤN .

Theorem 5.4. Consider the estimator ĤN given by (5.18). Let the assumptions in Proposition 5.1 prevail.
Assume also αβ > 1. Then the estimator (5.18) is stronly consistent and

2α(logN)N
1−α
2

(
ĤN −H

)
→(d) N

(
0,Γ(1, . . . , 1)T

)
(5.19)
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with the matrix Γ defined by (3.5).

Proof. From (5.15) and (5.14), we have for large enough N ,

log ŜN (tLaN , LaN ) = logD(tLaN , LaN ) + log
(

1 + V̂N (tLaN , LaN )
)

= (β + 2H + 1) log(LaN )

+ log

(
1

4
KΨ,H

)
+ log

(
1 + V̂N (tLaN , LaN )

)
+ log(1 + εN )

with εN defined in Section 5.3. By plugging the above relation into (5.18), we obtain, for N large,

β + 2ĤN + 1 = β + 2H + 1 +
log
(

1
4KΨ,H

)∑d
L=1 log(LaN )∑d

L=1(log(LaN ))2
+ log(1 + V̂N (tLaN , LaN ))

∑d
L=1 log(LaN )∑d

L=1(log(LaN ))2

+ log(1 + εN )

∑d
L=1 log(LaN )∑d

L=1(log(LaN ))2

and so

2(ĤN −H) =
log
(

1
4KΨ,H

)∑d
L=1 log(LaN )∑d

L=1(log(LaN ))2
+ log(1 + V̂N (tLaN , LaN ))

∑d
L=1 log(LaN )∑d

L=1(log(LaN ))2

+ log(1 + εN )

∑d
L=1 log(LaN )∑d

L=1(log(LaN ))2
.

Note that V̂N (taN , aN ) converges to zero almost surely as N →∞, this is a consequence of Proposition 3.1 and

of a standard Borel-Cantelli argument, see e.g. [24]. Therefore, as εN tends to zero we get that ĤN →N→∞ H
almost surely and by using Theorem 3.3 we obtain the convergence (5.19).

5.4. Estimation when the time is fixed

Assume now that the time t is fixed, as in (2.12). We would like to estimate the parameter H of the mild
solution (2.4) based on the observation of the solution at a fied time and at discrete points in space. The result
in Proposition 4.4 shows that the behavior of the wavelet coefficient is not a power-function with exponent
depending on H and their relationship is more complex. Actually

Ed(t, aN , i)
2 =

1

NaN

[
K1,t(H) +K2,t(H)N−α

]
→N→∞ K1,t(H) (5.20)

with K1,t(H),K2,t(H) from Proposition 4.4. Therefore the log–log regression argument employed above cannot
work when the time is fixed. We proposed and alternative method via the analysis of the constant K1,t(H).

Consider the sequence SN given by (5.11) and assume now (2.12). By Proposition 4.4,

ESN (t, aN ) = D(t, aN ) = K1,t(H) +K2,t(H)N−α →N→∞ K1,t(H) (5.21)

with K1,t(H) = 1
2(H+1) t

2H+2, see (4.10). By approximating, as usual, ESN (t, aN ) by SN (t, aN ), we can say that

for N large enough, SN (t, aN ) is close to K1,t(H).
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Lemma 5.5. For some t > 0 sufficiently large (not depending on N), the equation

SN (t, aN )−K1,t(x) = 0 (5.22)

has a unique solution in the interval
[

1
2 , 1
]
.

Proof. Consider the function

fN,t(H) = SN (t, aN )−K1,t(H)

with H ∈
[

1
2 , 1
]
. We have

f ′N,t(x) = − ∂

∂H
K1,t(H) = −f1(H)t2H+2 log t+ f2(H)t2H+2

with

f1(H) =
1

2(H + 1)
> 0

and f2(H) = 1
2(H+1)2 for H ∈

[
1
2 , 1
]
. When t→∞, this derivative behaves as f1(H)t2H+2 log t so it is positive

by choosing a suitable time t large enough. Consequently, the function fN,t is invertible on
[

1
2 , 1
]

and the
conclusion follows.

We will assume in the sequel that t is large enough in order to ensures the existence and uniqueness of the
solution to (5.22).

Definition 5.6. We define ĤN to be the unique solution of the equation (5.22).

We derive the asymptotic properties of the estimator ĤN .

Proposition 5.7. The estimator ĤN from Definition 5.6 is strongly consistent. Moreover, it satisfies the
following limit behavior in distribution

N
1−α
2 (ĤN −H)→(d)

N→∞ N

(
0, 2K1,t(H)2

(
∂

∂H
K−1

1,t (H)

)2
)
. (5.23)

Proof. By Lemma 5.5, for some t > 0

SN (t, aN ) = K1,t(ĤN )

and from (5.12),

SN (t, aN ) = D(t, aN )(1 + VN (t, aN )).

Thus

K1,t(ĤN ) = D(t, aN )(1 + VN (t, aN )).
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We let N →∞ above. Since VN (t, aN ) tends to zero almost surely and D(t, aN ) converges to K1,t(H) as N →∞,
we get

lim
N→∞

K1,t(ĤN ) = K1,t(H) almost surely. (5.24)

By the proof of Lemma 5.5, we deduce that K1,H is invertible on
[

1
2 , 1
]

and its inverse is continuously

differentiable on this interval. By applying K−1
1,t to (5.24) we deduce that ĤN →N→∞ H almost surely.

Let us show that the estimator is asymptotically normal. Indeed, from (5.12)

1

D(t, aN )
(SN (t, aN )−D(t, aN )) = VN (t, aN )

and consequently, in distribution, by Theorem 3.5

1√
2
N

1−α
2

1

D(t, aN )
(SN (t, aN )−D(t, aN ))→N→∞ N(0, 1).

Given the asymptotic behavior of D(t, aN ) (see 5.21)), we can write

N
1−α
2

(
K1,t(ĤN )−K1,t(H)

)
→(d)
N→∞ N(0, 2K1,t(H)2).

By using the delta-method with the continuously differentiable function K−1
1,t on

[
1
2 , 1
]
, we obtain (5.23).

Let us end this statistical inference part with some comments:

Remark 5.8. 1. There exist alternative ways to estimate the Hurst parameter for t fixed by exploiting the
relation (5.20). But using this result for different fixed times t1, . . . , td > 0, and by applying a nonlinear
least-squares regression of SN (ti, aN ) on ti with i = 1, . . . , d we can obtain another estimator for H (which
should be, in principle, consistent and asymptotically normal). Being related to nonlinear regression,
it analysis could be more complex but probabably we can avoid the restriction of t large, assumed in
Proposition 5.7.

2. The estimator from Definition 5.6 is based on the variation SN (t, a, i) which is written in terms of the
continuous wavelet transforms d(t, a, i) and the of the inverse function K−1

1,t . While the inverse can be
(at least numerically) computed, the wavelet coefficients are not directly computed from the observations
u(t, k), k = 1, . . . , N . An approach to compute them is use Riemann sums approximations, as in (5.1).
Another possibility is to use a pyramidal multiresolution algorithm (see for example the survey [6]).

3. Other methods (not based on wavelets) to estimate the Hurst parameter based on observations of (2.4)
at fixed time are obtained via the generalized spatial variations of the solution (see e.g. [12] or [22]).

Appendix A.

The basic tools from the analysis on Wiener space are presented in this section. We will focus on some
elementary facts about multiple stochastic integrals. We refer to [17] for a complete review on the topic.

Consider H a real separable infinite-dimensional Hilbert space with its associated inner product 〈., .〉H, and
(B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space (Ω,F,P), which is a centered Gaussian
family of random variables such that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H for every ϕ,ψ ∈ H. Denote by Iq the qth multiple
stochastic integral with respect to B, which is an isometry between the Hilbert space H�q (symmetric tensor
product) equipped with the scaled norm 1√

q!
‖ · ‖H⊗q and the Wiener chaos of order q, which is defined as the
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closed linear span of the random variables Hq(B(ϕ)) where ϕ ∈ H, ‖ϕ‖H = 1 and Hq is the Hermite polynomial
of degree q ≥ 1 defined by:

Hq(x) = (−1)q exp

(
x2

2

)
dq

dxq

(
exp

(
−x

2

2

))
, x ∈ R. (A.1)

The isometry of multiple integrals can be written as follows: for p, q ≥ 1, f ∈ H⊗p and g ∈ H⊗q

E
(
Ip(f)Iq(g)

)
=

{
q!〈f̃ , g̃〉H⊗q if p = q,

0 otherwise.
(A.2)

We have the following product formula: if f ∈ H�p and g ∈ H�q, then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r (f ⊗r g) (A.3)

where f ⊗r g denotes the contraction of order r = 0, 1, . . . , p ∧ q.
We denote by D the Malliavin derivative operator that acts on cylindrical random variables of the form

F = g(B(ϕ1), . . . , B(ϕn)), where n ≥ 1, g : Rn → R is a smooth function with compact support and ϕi ∈ H in
the following way

DF =

n∑
i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.

The operator D is closable and it can be extended to the closure of the set of cylindrical random variables
(denotes D1,2) with respect to the norm

‖F‖21,2 := E|F |2 + E‖DF‖2H.

If F = Ip(f) with f ∈ H�p and p ≥ 1, then

DF = pIp−1 (f(·, ∗)) (A.4)

where “∗” stands for p− 1 variables.
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