ESAIM: PS 25 (2021) 220-257 ESAIM: Probability and Statistics
https://doi.org/10.1051/ps/2021009 WWW.esalm-ps.org

WAVELET ANALYSIS FOR THE SOLUTION TO THE WAVE
EQUATION WITH FRACTIONAL NOISE IN TIME AND WHITE
NOISE IN SPACE*

OBAYDA ASSAAD AND CIPRIAN A. TUDOR™

Abstract. Via Malliavin calculus, we analyze the limit behavior in distribution of the spatial wavelet
variation for the solution to the stochastic linear wave equation with fractional Gaussian noise in time
and white noise in space. We propose a wavelet-type estimator for the Hurst parameter of the this
solution and we study its asymptotic properties.
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1. INTRODUCTION

In mathematical statistics, the parameter estimation for stochastic (partial) differential equations constitutes
a topic of wide interest (see, among many others, the monographs or surveys [8, 14] or [20]). In the last decades,
the statistical inference for stochastic models driven by fractional Brownian motion and related processes also
became a popular topic, due to the developments of the stochastic calculus for fractional processes (see, again
among many others, [13, 21, 25]). A common characteristic of the above mentioned references is that they
analyze estimators for the drift parameter or for the diffusion coefficient for standard fractional stochastic
(partial) differential equations and very few works studied the problem of the estimation of the Hurst parameter
of the driving noise (see [12, 22, 23]).

In our work, we will consider the linear stochastic wave equation (2.1) driven by a fractional-white Gaussian
noise (i.e. a Gaussian noise that behaves as a fractional Brownian motion in time and as a white noise in space)
and we construct and analyze statistical estimators for the Hurst index of the solution, based on the discrete
observations of the solution in space and time. The stochastic partial differential equation (2.1) constitutes a
model for an infinite vibrating string (under an ideal context, with uniform mass, neglecting the air resistance,
etc.) perturbed by a random force which behaves as a fractional Brownian motion in time and as a Wiener
process in space. For related works on the stochastic wave equation, we refer, among many others, to [4, 10, 24].
The value u(t, z) modelizes the vertical displacement from the x-axis of the string at time ¢ and at position
2 (in a coordinate system with x on the horizontal line and u on the vertical line). The displacement of the
string is clearly affected by the random force and in particular by its Hurst parameter H. This influence of the
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Hurst parameter appears in several aspects, such as the probability distribution of the solution to (2.1) or the
regularity of its sample paths. Indeed, for fixed x € R, the process u is self-similar of order H + % in time and
its paths are Holder continuous of order § € (0, H) in space and the same Holder continuity holds with respect
to the time variable (see e.g. [24]). The Hurst parameter also characterizes other properties of the solution, such
as the hitting times, the Hausdorff dimension or the regularity of its local times (see e.g. [9]). Therefore, the
estimation of this parameter is of interest.

We propose a wavelet-type estimator defined via the decomposition of the observed process in a wavelet basis.
The wavelet estimators have been intensively used in order to identify the Hurst paramter of the fractional
Brownian motion and related processes (see e.g. [1, 5, 7, 11, 15]). Such estimators have in general several
advantages: they are robust and computationally efficient, they are based on the log-log regression of the
empirical variance onto several scales and this regression is useful for goodness-of-fit of the model, they offer
flexibility on the choice of the wavelet basis etc.

Let (u(t,z),t > 0,z € R) be the solution to the wave equation with fractional-white additive noise. Here we
used a wavelet decomposition of the solution to the wave equation (2.1) with respect to its space variable by
assuming that the time variable is fixed. That is, we consider a “mother wavelet” ¥ with ) vanishing moments
(Q > 1) and we define the wavelet coefficient d(t,a,i) = ﬁ Jo ¥ (%) u(t,z)dz with ¢ > 0 fixed and the scale
a > 0. The wavelet variation, denoted Vi (t,a) in the sequel, is defined by (2.10) by taking the sum of the
centered and renormalized squared wavelet coefficients. By analyzing the asymptotic behavior of the wavelet
variation Vi (¢,a) as N — oo, we are able to construct, via a log—log regression of the empirical variance onto
several scales, an estimator for the Hurst parameter of the solution to (2.1) and to analyze its asymptotic
behavior. The asymptotic behavior of the estimator is strongly connected to the asymptotic behavior of the
wavelet variation Viy(a). The time ¢ also plays a role. For practical purposes, it would be convenient to estimate
H by assuming that the solution is observed at a fixed time and at discrete points in space. On the other hand,
as we will notice later, in the case of fixed time the empirical variance does not behave as a power function
whose exponent is a linear function of H and the log—log regression argument cannot be applied. The relation
between the wavelet variance and the Hurst index is more complex and we construct our estimator by analyzing
this connection.

The techniques that we use to study the limit behavior in distribution of the wavelet variation are based on
the Malliavin calculus and Stein method. We employ the recent Stein-Malliavin theory (see e.g. [16]) in order to
prove that this sequence satisfies a Central Limit Theorem (CLT) and to derive the rate of convergence for this
limit theorem. As mentioned above, we distinguish two situations: when the time ¢ varies with N (i.e. t = N
with 8 > 0) or when the time ¢ is fixed (and in this case we restrict to the case of the Haar wavelet). We will see
that in these two situations, the behavior of the wavelet variation is pretty different, although it always satisfies
a CLT (with a different rate of convergence). We deduce the limit behavior of the associated Hurst parameter
estimators, via a log—log regression of the empirical variance. We also notice that we use spatial wavelet variation
to estimate the Hurst parameter of the solution, although this parameter appears in the time covariance of the
noise and it characterizes the self-similarity of the solution in time.

We organized our paper in the following way: Section 2 contains some preliminaries on the wave equation with
fractional-colored noise and on wavelets. In Section 3 we state our main theoretical results. Section 4 contains the
proofs of the main results, including the correlation structure of the wavelet coefficients, the magnitude of the
L? -norm of the wavelet variation and the Central Limit Theorem for this sequence as well as the Berry-Essén
bound for this limit theorem. Section 5 is devoted to discretized of the wavelet variation and the construction
and the asymptotic study of the wavelet-type estimator for the Hurst parameter of the solution to the stochastic
wave equation.

2. PRELIMINARIES

Let us start by presenting some basic facts on the solution to the wave equation with additive fractional-
colored noise and on the wavelet analysis.
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2.1. The solution to the wave equation

Let (u(t,z),t > 0,z € R™) be the solution to the wave equation with fractional-white noise

Su(t,e) = Ault,z) +WH(t,z), te(0,T], T >0, z€R"
u(0,z) = 0, zeR" (2.1)
%‘(O, ) = 0, zeR™

Here A is the Laplacian on R™, n > 1 and W = {WH (A); t € [0,T], A € B,(R")} is a real valued centered
Gaussian field, over a given complete filtered probability space (Q,F, (§¢)i>0, P), whose covariance function is

E(WtH(A)WH(B)) = RH(t7 $)A(AN B), for every t,s > 0, A, B € B,(R"), (2.2)

S

where X is the d-dimensional Lebesgue measure, B;,(R") is the set of the A-bounded Borel subsets of R” and
R is the covariance function of the fBm with Hurst parameter H € (0,1) given by

1
RHA(t,s) := 5(152’1’ + s |t — s|2H), s5,t > 0. (2.3)

Throughout this work, we will assume H € (%, 1).
The solution of the equation (2.1) is understood in the mild sense, that is, it is defined as a square-integrable
centered field v = (u(t,z); t € [0,T],z € R™) defined by

¢
u(t,z) = /0 y Gi(t— s,z —y)WH(ds,dy), t>0,z€R", (2.4)

where (7 is the fundamental solution to the wave equation and the integral in (2.4) is a Wiener integral with
respect to the Gaussian process W . Recall that for n = 1 (we will later restrict to this situation in our work)
we have, for every t > 0 and x € R,

1
Gi(t,z) = 5 Ljal<ty- (2.5)

We refer to e.g. [10] (when H = 1) and to e.g. [4] (for H € (4,1)) for the definition and basic properties of the
solution. The solution (2.4) is well-defined in dimension n =1 for every H € (3,1) (see e.g. [24]) and we have
an explicit formula for its spatial covariance which will be a key ingredient in our study (see [12])

1 9H+1 |y _ ZL'|2H t2H+l
E (U(t,$)u(t,y)) = 5 (CH|y - Jﬁ‘ =1 9 + 2H + 1) 1{‘9*I|<t}
(2t — |y — )7+
+ SRH T 1) Lit<iy—o|<26} (2.6)

with cg = %. When ¢ > 1 and |z — y| < 1, this expression reduces to

—_

2 +2H+1

[\]

2H+1 ly — 3'3|2H (2
E (u(t,z)u(t,y)) = = | caly — x| —t .
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We notice that the solution is stationary in space while it has a scaling property in time (it is actually self-similar
in time of order H + %) The sample paths of the solution are Holder continuous in time and in time of order
d € (0,H) (see e.g. [24]).

2.2. Wavelets

Let ¥ be a continuous function with support in [0, 1] such that its first ) moments vanish i.e. there exists
and integer (Q > 1 such that

/ tPW(t)dt = 0 for p=0,1,...,Q — 1 and / tW(t)dt # 0. (2.8)
R R

The function ¥ is usually called mother wavelet. Define for ¢ > 0, i =1,..., N, (with N, = [N/a] — 1)

d(t,a,i) = \f/ f—z (txdx—f/ u(t, a(z +1))dx (2.9)

and

Also define the wavelet variation in space of the solution (2.4) by

1 &
Vv ( (t,a,i)? 1). (2.10)

a i=1

We will study the asymptotic behavior, as N, — oo, of the wavelet variation Vy(t,a). In applications, the
parameter a, which is called scale, will depend on N and it is usually assumed that a = ay — N 00 C.

Given the covariance of the solution to the wave equation (see formula (2.6)), it is clear that the time ¢ will
play an important role, depending on its position with respect to the spatial increment |z — y|.

We will consider two situations: the fized time case, i.e. the time ¢ > 0 is fixed, and the moving time case,
when the time depends on N and it tends to infinity as N — oo. The first situation would be more convenient
for applications to parameter estimation, since it means that the solution is observed only at a fixed time.
Nevertheless, in this case the wavelet variation does not provide an explicit estimator since the usual log—log
regression procedure to construct an wavelet estimator based on Vi (¢, a) leads to a more complicated equation
in H. A slightly different argument is then used for fixed time.

We will start with the moving time situation. We will assume

a=ay=N"with0<a<1landt=ty =N with 8> 1. (2.11)

The choice of such time ¢ will be explained later, it allows to reduce the expression of the correlation of the
wavelet coefficients. Then, we will consider the situation when the time is fixed, i.e. we suppose

a=any =N with0<a<1andt>0is fixed. (2.12)

In this second case, in order to have a precise estimate on the wavelet coefficient and on the empirical variance
EVx(t,a), we need to restrict to a particular case of wavelet system (the Haar wavelet).
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3. MAIN RESULTS

In this section we will state our main theoretical results. Their proofs are postponed to Section 4. These
results give the asymptotic behavior as N — oo of the wavelet variation Vy (¢,a) given by (2.10) as well as the
limit behavior in distribution of the renormalized wavelet variation. We will show that, in both moving time
and fixed time cases, the magnitude of the variance of Vi (t,a) as N — oo is the same and the renormalized
wavelet variation satisfies a Central Limit Theorem. We also evaluate the rate of convergence to the normal
distribution, which varies in the two cases under consideration.

3.1. The moving time case

Let us start by treating the situation when the time ¢ depends on N, i.e. we assume (2.11). In this case, we
obtain the following renormalization of the wavelet variation.

Proposition 3.1. Let Vi(t,a) be given by (2.10). Assume Q > 2 or Q = 1,H < %. Let an,ty be given by
(2.11). Then

,a 2
N'EVi(tn, an)® =N 72— Y91 (k) == Kow.n (3.1)
Ky m keZ

with gg given by
/ / dedy ¥ (z)¥(y)|z — y + k|*H (3.2)

and Ky g given by, for H € (%, %)

Kyg=— //dmdy\l/ (y)|z —y|*H. (3.3)

Notice that the above integral (3.3) is finite because the support of the mother wavelet ¥ is included in the
interval [0, 1] and 2H > 0. We assume, as in [5], that Ky gz > 0 (which is satisfied by a large choice of the mother
wavelet U). The results in Section 4 show also that the series in the right-hand side of (3.1) is convergent.

Let us denote, for every N > 1

-1 l-o
Fy ZKo,\IQJ’HN 2 VN(tN,aN) (34)

with Vy(tn,an) defined in (2.10), Ko v g from (3.1) and suppose that assumption (2.11) is verified. From
Proposition 3.1

EF% =N 00 1.

We will obtain the following result. We denote below by ¢, C' generic strictly positive constants that may
change from line to line. By d we denote the distance between distributions of random variable and below it
can be each of the following distances: Kolmogorov, total variation, Wasserstein or Fortet-Mourier (see [16]).

Theorem 3.2. Let Fy be given by (3.4). Then the sequence (Fn)n>1 converges in distribution to a standard
normal random variable Z ~ N(0,1) and

d(Fy,Z) < cN T .
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We can also prove a multidimensional central limit theorem for the wavelet variation considered at different
scales. This will be used in order to estimate the Hust parameter of the solution to the wave equation in the
next section.

Theorem 3.3. Let Viy(t,a) be given by (2.10) and assume (2.11). Let d > 1. Then the d-dimensional random

vector (Nl_Ta Vo (tn, LaN))L . converges in distribution, as N — 00, to a centered d-dimensional Gaussian
1

yeeey

vector with covariance matriz (U, 1,)p ;. _, 4 where

32 1
FL17L2 = K\QI/J_[ (L1L2)2H+1 C(L13L27H) (35)
with C(Ly, Lo, H) given by
NLlaN NLzaN
C(Ly, Lz, H) = lim Ny (91,1 (i ) (3.6)
i=1  j=1

where
91,1,L0,0(1,7) = / / dady¥ (z)¥(y)| L1z — Loy + Ly — Loj|*".
R JR

It follows from our proofs in Section 4 that the limit in the right-hand side of (3.6) exists and is finite.

3.2. The fixed time case

If ¢ is fixed, we can prove the following approximation result for the variance of the wavelet variation. As
mentioned, the role of the mother wavelet will be played by the Haar wavelet, i.e.

1, 0<z<j
U(z) =< -1 i<z<l1 (3.7)

0, otherwise.

)

Proposition 3.4. If Vy(t, a) is given by (2.10) and (2.12), (3.7) hold true, we have for every t > 0
Nl_aEVN(t, aN)2 —Nooo 2. (38)

By Proposition 3.4, we have the following renormalization of the wavelet variation

11—«

2 V(t,aN), (39)

1
Gy =: —=N

V2

i.e. EG% —N—oo 1. We will show below that the renormalized wavelet variation satisfies a CLT also when the
time is fixed.

Theorem 3.5. The sequence (Gn)n>1 given by (3.9) converges in distribution to Z ~ N(0,1) and for N large
enough

1 1
7)< —_—+ — ).
d(Gy, )_C(le +N2a>
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Let us make a short discussion around the above statements.

Remark 3.6. e We notice that the renormalization of (2.10) is of the same order in both cases (fixed time
or moving time) although, as we will see in Section 4, the correlation structure of the wavelet coefficient
is different.

e The wavelet variation (2.10) satisfies a CLT both in the moving or fixed time cases. On the other hand,
the behavior of this sequence is pretty different in these two cases. While for fixed time, this sequence
basically behaves as a sum of independent random variables (see also Remark 3.6), in the moving time
case there is a non-trivial correlation between all the summands that compose Vi (¢, a).

e The rate of convergence of the sequence (3.9) to the normal distribution varies upon a € (0,1): when
a € (07 %), we have d(Gy, Z) < cﬁ while for o € (%, 1), one has d(Gn,Z) < chl, Theorem 3.5 also

o

suggests that if the scale a is constant (i.e. @ = 0) the sequence Vi (¢, a) does not satisfy a CLT.

4. PROOFS

This part contains the proofs of the theoretical results stated in Section 3.

4.1. The correlation structure of the wavelet coefficient

The behavior of the wavelet variation (2.10) will depend on the behavior of the variance of the wavelet
coefficient Ed(t,a,i)? and of the correlation between the wavelet coefficients, i.e. Ed(t,a,)d(t,a,j) with i # j.
We will start by analyzing the behavior of these quantities in both cases (2.11) and (2.12).

Let d(t,a,i) be given by (2.9) with ¢ > 0,a > 0 and ¢ = 1,..., N,. We will use the following notation
throughout our work

D(t,a) := Ed(t,a,i)? (4.1)

for every t > 0,a >0 and i = 1,..., N,. Notice that, due to the stationarity of the process (u(t,z),z € R), the
quantity Ed(t,a,i)? does not depend on i.

Let t > 0,a > 0. For every 4,5 = 1,..., N, we have from the covariance formula (2.6)
Ed(t,a,)d(t0.) =a [ [ dady¥@)0(@Bu(t ale + )ult.alo + 1) (12)
RJR
= a/ / dady ¥ (z)¥(y) [C?HaQHHh: —y+i—jPHrt
RJR

2H+1

t oon . L2H
3¢ [z —y+i—j| +m Lja—yti—jl<t}

(2t —alz —y +i — j|)2+!
dody® (z)¥ 1 .
+a/]R/]R wdy ¥ (@) ¥ () 8(2H +1) {I<|z—y+i—jl<2L}

We will see below that the above expression will simplify under assumption (2.11).

4.2. The moving time case

First, we assume that we work under the assumption (2.11). We start by studying the variance of the wavelet
coefficient. Let us recall the notation Ky g from (3.3).

We have the following result.
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Lemma 4.1. Assume (2.11). Consider the wavelet coefficient d(t,a,i) defined by (2.9) and its variance D(t, a)
given by (4.1). Then

1 1

WD(MH (lN) 7 N-—o0 ZK\II’H

with Ky g from (3.3).

Proof. From the assumption (2.11) and the property (2.8) of the function ¥, using also |z — y| < 1 (which
implies that |z —y 44 — j| <ty = N? by (2.11)), the last two summands in (4.2) vanish and we obtain

Ed tNa an,? d(th an, j) (43)

—ay [ [ dedp¥@u) | Gadl e -y i P - T ey i P
Let us take ¢ = j in (4.3). We have
D(ty,an) = Ed(ty,an,i)? = —%K@7H+%N(2H+2)“ + iK@,HN“@H“)a. (4.4)
Since 4 (2H + 1)a > (2H + 2)a (because 8 > «) we obtain the conclusion. O

Let us now study the correlation (4.3) with ¢ # j. We can write

) . CH tn .
Ed(tn,an,i)d(ty,an,j) = 70?\7H+29H+ 1(i—j) — 1 G?VHHQH(Z —7) (4.5)

with the notation g (k) from (3.2). Notice that for every k € Z we have gg (k) = g (—k) for k € Z. The analysis
of the quantity gy (k) for k large, will give the asymptotics of the correlation (4.5). Recall that the integer @ > 1
is fixed by (2.8).

Lemma 4.2. Let gy be given by (3.2). Then for k large enough, we have for every H € (%, %)
91 (k)| < Cu, i,k 19

where Cy m,q 15 a strictly positive constant not depending on k.

Proof. Using the following asymptotic expansion at z =0

2H(2H —1)...(2H — 2Q)

(2Q - 1)! S Gl + 0.

(1+2)=142Hz+ ... +

where 6, is a point located between 0 and z, we can write, for k large enough, if Cy ¢ is a constant depending

only of H and @,
v\ 2H
k) :k2H//dxdy\Il(w)\Il(y) <1+ y)
R JR k

— g\ @
~ g [ [ asapuype) (T1) (100020
R JR
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where we used (2.8) and we denoted by 6, , 1 a point located between 0 and *7£. Since |z — y| < 1, we have
for k > 2

1 3
<1 4Okl <=
92 = | + )y7k| =9
We deduce that, for k large

()] < Cir 2212122 [ [ dady (2wl ~ 1 = i gh?' 2

using the fact that the support of ¥ is included in the interval [0, 1].

O
Lemma 4.3. Let gy be given by (3.2). Denote, for a >0 and N > 1
gn,u( Z gu (i —j)? (4.6)
4,5=1
Then, for every H € (%, %) (if @ = 1) and for every H € (%,1) (if @ >2)
1
N, ~ 9N, H(a) 2N, o0 ZQH . (4.7)
keZ
Moreover, for every H € (%, 1) and for every @Q > 1, for N large enough
1 Cuv.n.q if Q> 2,
= a)l < A 4.8
Na |gN,H+%( )| — {C\I/,H,QN(%Hl 'LfQ: 1 ( )
and
) Cuv.n0 if Q>2,
1 — — < B 4.9
;19H .7 gH+ ( .7) = {C\II,H,QN;lHQ ZfQ:]. ( )

Proof. We can write

1 N, — |k
79NH ZQH 1{\k\gNa}T||~
kezZ @

By the dominated convergence theorem and Lemma 4.2 we clearly have

1
N, gNH —>N —00 ZQH
keZ

Note that the series ), ., gr(k)? is convergent due to Lemma 4.2. Now

1 Ny — |k‘
v 1 @)= D gm0 () L greny 5
@ kEZ @
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Z 9H+%(k)2§0 Z pAH+2-4Q

|E|<Na |E|<Na

again by Lemma 4.2. The series Y, ., k*#T274Q is convergent when @ > 2 and for @ = 1 and H > 1, the
sequence ZI k<N, EAH+2-4Q hehaves as Cu,oN, 4H—-1 This implies the estimate (4.8). A similar argument glves
(4.9), because from Lemma 4.2

No — k|
Z 910 = Ngp 3= D) = D 9mk)gm 3 (B)Lgm<ny — 5
a 3,j=1 keZ a
< Como Z RAH+1-4Q

|k|<Na

4.2.1. The fized time case

Let us assume ¢ > 0 is fixed, i.e. we assume (2.12). As before, we use the notation
D(t,ayn) = Ed(t,ay,i)?

fori=1,..., Ny, with ay = N, 0 < a < 1. We start by estimating the behavior of D(¢t,an) as N — co. It
is impossible to get the exact behavior of this quantity for an arbitrary function ¥. Therefore, in the sequel we
will choose the function ¥ to be the mother wavelet of the Haar system, see (3.7).

Proposition 4.4. Let ¥ be given by (3.7) and assume (2.12). For every t > 0 and for N large enough

1
D(t,an) = K1 (H) + Ky (H )NO‘
with

1

Ki:(H) = WA+

t2H+2, (4.10)

and Ko (H) = 2?21 Kjo4(H) for Kj2+(H), j =1,...,4 given by (4.17), (4.18), (4.19) and (4.20). In
particular,

D(t,an) = Nooo K1 1(H).
Proof. From (4.2) we have
D(t,an)=TLign+ I n+ I3 v + 1o N
with

t
Loy = CH Na(2H+2)AH 1N Iyin = ZNQ@HJFI)AH,N, (4.11)

t2H+1
I3,t,N = 2H+ 1 d:L'dy\I/ )1{|I*y‘<ﬁ}’ (412)
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1

Liyn = NamBH,N (4.13)
where we used the notation
A= [ [ dady @ ¥@le — P gy gy (4.14)
and
By = [ dsdy@)w) @t = N =) 1 g oo (4.15)

To obtain the speed of convergence of I ; y and Is; n, we need to study the sequence Ay n defined by (4.14).
Clearly, Ay n converges to zero as N — oo but we need to analyze how fast this sequence goes to zero. We
have

1 T
Apn = 2/ dx/ dy ¥ (2)W(y) (@ — y)* 1y oy

- /d/( IR L O

:2/0tN adx/o dy W (z)¥(y )(x—y)2H+2/tl_a dx/x:N_a dy W (z)U(y)(z — y)?H.

Let us chose N large enough such that

DN =

NO(

We will have, with ¥ from (3.7),

tN~ T
Apg N = 2/ dz dy y)2H + 2/ d:c/ y(x —y)*"
-« r—tN—«

72/ d:c/m tNady\Il y)(z —y)*H

and by separating the integral dy in the last term above upon x = tN ™% less or bigger than one-half we will

obtain
AH,N:2/ dx/ dy(x —y 2H+2/ dm/ m—y)QH
—a T—tN—«
2—&-tN @ +tN <« T
—2/ dx/ dy(x — )2H+2/ dx/ dy(z — y)*
% r—tN—« % 1

1 T
+2/ dx/ dy(z — y)?.
THIN - T—tN—o
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This gives

2
2H +1

Ag N =

_|_

1 2H 42 + t 2H+1 1 L L 2H+1 L
2H +2 Ne 2 No No No
+ 1 ¢ 2H+2 ¢ 2H+2 N ¢ 2H+1 1 t

2H +2 \ N 2H +2 o No 2 Ne

92 3 1 ¢ 2H+2 + ¢ 2H+1 . 3

2H +1 | 2H +2 \ N o Na
. 6 i 2H+2 N 2 L 2H+1
~ 2H 42 \ N@ 2H +1 \ No ‘

Consequently, we obtain from (4.16) the following behavior for the summand I ; y in (4.11)

c 1
Il,t,N = 7HNO¢(2H+2)AH+%)N = Kl,l,t<H) + K1,2,t(H>m
with
_ _CH oH+2 _ 73cH opqs
K H)=——"—t d K H)=—"—t .
1,1,t( ) oOH + 2 an 1,2,t( ) oH + 3
The second summand I, y gives, using (4.16)
t a(2H+1) 1
Iy N = _ZN Agn =Ko1,(H)+ Ko 0(H)— Ne
with
Koy (H) = b pme gk (H) = __ 3 s
Bt 22H + 1) »t 2(2H + 2) '
Let us now calculate the term Is; n defined in (4.13). We can write
t2H+1
Iy n =N 22H+1) / dx/ dy¥ ()W ()1 gz y< e}

and since (this is the same calculation as for Ay y without the factor (z — y)2H)

2t t\?
/dx/ (@)W a—y< g} = Na—3<Na)

1
) Na

we obtain

Isyn =Ks14(H) + Kso,.(H

231

(4.16)

(4.17)

(4.18)

(4.19)
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with

1

-3
m&H—W and K32, (H) = ___9  jeH+3

K1 (H) = 2(2H + 1)

Let us regard the last summand I, n in (4.13). With By n given by (4.15)

1 1
By = / / dady¥(2)¥(y) (2t — Nlo —y)* 1 o yica e
=2 / J R T T e ) R T

r—tN ¢
- / dz / Ay ()T (y) (2t — N(x — )21+
(

x—2tN—*)V0

2N~ r—tN~¢
B N — ) 2H
- 2/0 dx/o dy¥(z)¥(y) (2t — N%(z —y))

1 z—tN~%
+2/ dx/ dyW(z)¥(y) (2t — N*(z —9))*"™ .= By y.n + Bo.urn-
2tN—« r—2tN—«

We estimate separately the 5ummands B1 u,n and By g, n. First, notice that we can choose IV large enough so
that & < 1 and therefore 2L < 1. We then get

t2H+3 22H+3
2 —
(2H+2)N2a( 2H+3

By gn =2

while for By g, n we have

1/2 z—tN~<
Bory =2 / do / dy (2t — N (z — 1))+
2 xT

tN—e —2tN-@
1/24tN @—tN~®
72/ dx/ dy (2t — N%(z — y))* !
1/2 T—2tN -~
1 z—tN ™«
+2/ dx/ dy (2t — N*(x — y))2H+1
1/2+4tN - T—2tN -

t2H+2 4t
=2 (1-—).
Ne(2H + 2) ( Na)

By putting together the above computations, we obtain

1 1

——N*B =K H)+ K, 4.20
82H +1) H,N a1,¢(H) + Ky (H )NO‘ ( )

Iy N =

with

t2H+2 t2H+3 22H+3
Kyq14(H) = ( + )

d Kyo (H) = —
s e+ 2 KedlH) =~ er T 2H + 3
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From (4.17), (4.18), (4.19) and (4.20) we obtain the conclusion. In particular, concerning the constant K4 ,(H)
which is needed in the sequel

1 1 1 1
Ky (H) = 2H+2 cH _ (2H+2
Le(H) DH+2 20@H+1) 2041 8QH+O)HIL)) 2012
by using the expression of ¢y in (2.6). O

We also need to analyze Ed(t,an,i)d(t,an,j) when |i — j| = 1. Only this correlation coefficient will be needed
for the renormalization of the sequence (2.10).

Proposition 4.5. Let d(t,a,i) be given by (2.9) and assume (2.12) and (3.7). Then for everyt > 0,N > 1

Bd(t,an,i)d(t,an,i+ 1) = Ly(H) Nla
with Ly(H) from (4.28).

Proof. We have

Ed(t,ay,i)d(t,an,j) = fan(i—j)

where (recall ay = N®)

fan(k
_aN//dxdy\I! )[ aAf o —y + kP

2H+1
NP 1)] Lo —ythi<zt)

2t —ay|r —y + k|)2H 1
+aN/R/Rdxdy\Il(x)\I/(y)( 8|(2H+1> ) 1{ AN (4.21)

_ZaN |x Y+ k|2H

Hence
Ed(t, ay, i)d(t, CLN,i + 1) = fH’N(l).
We can write, via (4.2)

fan)=Jien+Joen + I3 8+ Japn

with
—t
Jiin = C*HNQ(ZHH)CHJA Ne JaiN = 7No¢(2H+1)CH’N (4.22)
t2H+1
3N = 2H+ 0 / / dady¥(2)¥ ()1 yr1< L) (4.23)
o (2t = N®|z —y +1])2H+!
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where

1 1
Ciry = / J AR O T R Ve TR

We have, if N is such that < =

1 1
Cry = / do / Ay ()W (y)(z — y + 1)°H
0 +1—tN—«

= ol
—/ / dy(z —y + 1)1
0 aH1—tN—o

- ((2H+ 1)1(2H+2) - 2H1+ 1) <]\;>2H+2-

Therefore
1

JltN—KE)lt(H)Na (4.25)

with
c t2H+3 1 1
Ks1,(H) =2 - .

2 (2H +2)(2H +3) 2H +2

For the second term Jo; n in (4.22), it is immediate to see that
—t a(2H+1) 1
Jog N = ZN CunN = K6717t(H)m (4.26)

with

_ 1 1
T4 ((2H+1)(2H+2)_2H+1>'

The third summand (4.23) gives

t2H+1
— @
J3a.n =N SeH 1) / / dady¥ ()W (Y)1 1z yi1< o
(2H+1 wo (2H+3 ) .
- d ——— = K H)—.
2H+1 / x/a:+1 - 4(2H+1)Na 7.1, ( )N"
Finally, concerning the summand Jy ; n in (4.24), if 2t/N® < 1
(2t — N¥|z — y + 1])2H+!
Japn = N¢ / / dedy ¥ (z)P(y) 8(2H + 1) 1{ﬁf\m—y+ll<2ﬁ}

tN— ¢ z+1—tN~— ¢ _—
= 7N“/ dx/ dy(2t = N“(z —y+1 +
8(2H + 1) 0 +1-2¢N—« ( ( )
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We obtain
1 7t2H+3

J. =K H)— with K, H) = . 4.27
4,t,N 8,1,t( )NO‘ w1 8,1,t( ) 8(2H +2)(2H + 1) ( )

Consequently,

1 .

fH,N(l) = Lt(H)W with Lt(H) = K571)t(H) + KG,Lt(H) + K771)t(H) + Kg,Lt(H). (428)
O

4.3. Renormalization of the wavelet variation

In order to analyze the asymptotic behavior of the wavelet variation (2.10), we will use the chaotic expression
of Vi (t,a). We will work with multiple stochastic integrals with respect to the fractional-white noise WH.

Let & denote the space of all linear combinations of indicator functions 1jg4x 4 with ¢ > 0 and A € B,(R)
(the bounded Borel subsets of R). Let H be the completion of £ with respect to the inner product

(Lo,gxas Lp,sxa) = EWH(A)WH(B)) = R (t,s)\(AN B), for every t,s > 0, A, B € B4(R").

S

In particular (see [2])

t s
(o) = H(2H — 1)/0 /O dvidva|vy — vg\QH‘QAdxw(vl,x)w(vz7x)

for every ¢, 1 € H such that fot Jy dvrdva|vy — w2272 [0 da|o(vr, 2)p(va, x)| < oo.
Let I, be the multiple stochastic integral of order ¢ with respect to the isonormal process (W (), € H)
(see the Appendix or [3]). Then

t
utea) = [ [ it = 50— )W s dy) = D)
0 R
where

gt,ﬂc(sa y) = Gl(t - 5T = y)

and therefore the wavelet coefficient d(t, a,) given by (2.9) can be written as

d(t,a,i) = [ (fr,a:) with fia.i(s,y) = \/ZL/ V() gt a(ati) (8, y)da for every s > 0,y € R. (4.29)
R

Then, by the product formula for multiple stochastic integrals (A.3), we have, for every ¢t > 0,a > 0 and N > 1

tai) HEd( a,i
VN(t,a):Z< E;jazgt )_1>

= NDGo ZIQ( 220 (4.30)
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with f; 4, given by (4.29).
Let us compute the L?2-norm of the random variable Vi (t,a) given by (2.10). By using the isometry formula

for multiple integrals (A.2),

N,
2 a

EVn(t, a)2 = W Z (fr.ais ft7a7j>%-£
’ @ ig=1

Na
- W D (Ed(t,a,i)d(t,a, )" (4.31)

3,j=1
Again we study the behavior of (4.31) as N — oo when ¢ varies with N and when ¢ is fixed.

4.4. The moving time case: Proof of Proposition 3.1
Assume (2.11) and let us prove the limit theorem (3.1). The formula (4.31) becomes

N, 2
2 _ 2 tn L CH L.
EVy(ty,an)* = ~2 Dt an) > |:4Q§VH+19H(Z —J)+ 7Q?VH+29H+%(Z —J)
an i,j=1

with gg given by (3.2). Thus, with gy g defined by (4.6),

2 _
EVy(ty,an)? = Nz D(tn,an)"?
anN
t?\r 4H+2 C%I 4H+4
X TGGN gN,H(aN)‘i‘TaN 9N,H+%(GN)
t o
NCH . . . .
=N Y ani— gy (i)
i,j=1

We will use the notation fy ~ gy which in our work means that the sequences fn and gy have the same limit
as N — oc.

Under assumption (2.11), we can estimate EVy (¢, a)? as follows

32 _ o 1 o
EVN(tNaaN)2 ~ KTNZ(O‘ 1)D(tN,aN) 2 EN2ﬁ+(4H+2) gN7H(aN)
v, H
C%—I Na(4H+4) CH Nﬁ+a(4H+3) R . . . .
o In.mv3(an) = iglgH(Z_J)gH+%(Z_])

‘=v1N + V2N + V3N (4.32)

Let us estimate the three summands above. By the estimate of D(tx,ax) 2 in Lemma 4.1 and by (4.7), we

have

2
N2(a71)D(tN, aN)72N2ﬁ+(4H+2)aN17agN1H(Na)

2
N 27]\[2((1_1)]\7_25—2a(2H+1)]\[2,6’+(4H+2)ocNl—@gMH(NO‘)
U, H
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2 _
K2 .. > gn(k)?N!
‘I’erz

with Ky g from (3.3). Consequently
l-a 2 2
N 7% N ?Nooo K2 gu (k). (4.33)
v

Let us look at the term vy . By (4.8),

vy N < C\Ij HNa—lN—2B+2a % C\p)H7Q if Q > 27
S ComeN"~1 Q=1
< Cy H]\/vaf1 CQ’H’QN_2[3+2“ if Q> 2,
> , O\II,H,QN_2ﬁ+2aN(4H_1)(1_a) — C\I/7H,QNQ_1NQ(3_4H)_25+4H_1 if Q =1, H< %
Thus
N—2ﬁ+20¢ if Q > 9
1— = 4
N av?ﬁN < C\I'7H)Q {Na(34H)25+4H1 if Q _ laH < % PN o0 0 (434)

because o < 1 < f, a(3 —4H) <0 and —25 +4H — 1 < -2 + 2 < 0. Finally we look at vz n. We can write

C ifQ>2
van < Cy gNO TN x V. H.Q AH 2 1 Q=2
' ' C‘I’,H7QNaN_ ifQ=1
< Oy gNot C\P’H’QNIX_,B if @ > 2,
> , C\I’7H)QNa—ﬁN(4H—2)(1—a) — C\IJ7H’QNQ—1NQ(3—4H)—B+4H—2 if Q — LH < %
Thus
No—B i Q> 2
-« = 4
N"%3 Ny <Cynq {Na(34H)ﬁ+4H2 ifQ=1H< % N0 0 (4.35)

since a < B, a(3—4H) <0and —f+4H -1 < —-+1<0.
The bounds (4.33), (4.34), (4.35) lead to the desired conclusion. O

4.4.1. The fized time case: Proof of Proposition 3.4

If ¢ is fixed, we can prove the approximation result (3.8). We have

Nq

2 (Ed(t,an,)d(t,an,j)
Z Ed(t,a,i)?Ed(t,a, j)?

Na

D(t7 aN)72 Z (Ed(ta an, Z)d(t7 aN7.j))2

ij=1

2

EVN(t,aN)2 =
N 4,5=1

)

- N2
Ng,
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N,
2 _ = .
= N—ZD(t,aN) 2 Z (frn(i— 7))
anN i,j=1
with fy n given by (4.21). Notice that fy n(k) = fu n(—Fk) and
fr N (k) =0if k| > 2

by chosing N large enough. Since can be seen via (4.21), since the function ¥ has support included in [0, 1].
Therefore

EVy(t,an)? D(t,an) ™ [Na(fu,n(0))* + 2(No — 1)(fa,n(1))?] . (4.36)

2
NZ,

We have fg n(0) = D(t,an) and fu n(1) was computed before. Using (4.28), (4.36) can be written as follows

2 _ _ 2(N'=> —1)L3(H)
2 _ 2 1—a 2 t
EVN(t,aN) = 7N2(1_Q)D(t,a1\{) <N D(t,a]\/) + D(t,aN)QNQO‘ (437)
with L;(H) given by (4.28). Then
2 4L,(H)? 1
EVi(t,an)* ~

N(t an) (Nla + K1 (H)2 Nita

and the conclusion follows. O

Remark 4.6. As already noticed in Remark 3.6, the renormalization of (2.10) is of the same order in both
cases (fixed time or moving time) although the correlation structure of the wavelet coefficient is different. On
the other hand, in the fixed time case, the diagonal term of EViy(¢,ax)? is dominant for the behavior of this
quantity as N — oo (here is only one non-diagonal term which does not contribute to the limit), while when ¢
increases with IV, all the diagonal and non-diagonal terms have contribution to the limit.

4.5. Central limit theorem and rate of convergence

We will show that, both in the moving time and fixed time cases, the renormalized wavelet variation satisfies
a central limit theorem if Q@ > 2or Q@ =1, H < %.

Our main tool is the following result (see Thm. 5.2.6 and Cor. 5.2.10 in [16]). Recall that by d we denote
the distance between distributions of random variable and below it can be each of the following distances:
Kolmogorov, total variation, Wasserstein or Fortet-Mourier (see [16]).

Theorem 4.7. Let (Fy)n>1 be a sequence of random variables in the qth Wiener chaos (¢ > 1) with respect
to an isonormal process indexed by the Hilbert space H. Assume that EF3 —N_co 0 > 0. Then the sequence
(Fn)n>1 converges in law to the standard normal random variable Z if and only if || DFn||3, converges in L? ()
as N — oo to qo2. In this case

d(Fy,Z) < C (\/Var (IDEN|3,) + |EFX — a2|) .

4.6. The moving time: Proof of Theorems 3.2 and 3.3
Consider the sequence (Fn)n>1 given by (3.4) and recall that from Proposition 3.1

EF%Y =N oo 1.
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Also, by (4.30) we have the following chaos expansion of Fy, for every N > 1, with f; o; given by (4.29),

Nan f®2 Nay

_1 a—1 tNLaN i -1 a=1 — 2
Py = KoV Tl | Y grasts | = KoduN = Dl an) B | 3 [0 |- (438)
i—1 ’ ’ =1

So, Fy is an element of the second Wiener chaos (with respect to the Gaussian noise WH introduced in Section
4.3) for every N > 1 and we may apply Theorem 4.7 in order to check its asymptotic behavior in distribution.

Proof of Theorem 3.2. By taking the Malliavin derivative with respect to fractional-white noise W*# in (4.38)
(see formula (A.4)),

N,

-1 a=1 —1 =\
DFy = 2K0,\fI,HN 2 D(tN7a‘N) Z Il(ftN;aN7i)ftN7aN;i
=1

and, if H is the Hilbert space associated with the fractional-white Gaussian noise (see the beginning of Section
4.3),

Nay
IDFx |3 = 4Ky 3 p N ' D(tn,an) ™ > Li(feai) 1 (frag) (Frais frag)n
ij=1

Nay

= 4K(;\}/7HNQ71D(tNa CLN)72 Z IQ(ft,a,i ® ft,a,j)<ft,a,i7 ft,a,j>7‘l
i,j=1
Nay
+H4K 4 g N Dty an) ™ > (frais frai)i
i,j=1
NQN
= 4Ky 3 g N7 D(tn,an) 2D Lfeai @ frag)(frais frai)m + BIDFy |3,

,j=1

with f; ,; from (4.29). Notice that, since Fiy belongs to the second Wiener chaos, we have E||DFy |3, = 2EF%.
By Theorem 4.7,

A(Fy, 7)< ¢ ( Var (|DFy|13) + BIDE % - 2)

SO
d(Fn,Z) < e(/Tin + Ton)
where
Ny 2
Tiy =E [4Ky L p N Ditw,an) 2 Y B(frai ® frag)Frais fras)n (4.39)

ij=1
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and

Ny
Tyn = E|DFy |3 — 2 = 4K 4 yN* ' D(tn,an) > Y (frais fras)s — 2 (4.40)

ij=1
Let us first estimate 75 n. Since

<ftN7aN,iftN,aN,j>’H = Ed(tNaaN7i)d(tNaaN7j)

we can write, as in (4.32)

- a— — 1 a
Tyn = 4Kq g g N D(tn,an) 2 | = N2y 4 ay)

16
c2 CH o
TN gy gy () = NPT S g6 = gy (19| 2
i,5=1

=T 1N +To2 N +T23N.

First, we analyze the term 751 n. We have

— o— — 1 (03
TQ’LN = 4K07&,7HN 1D(tN,aN) 2T6N2'8+(4H+2) gNyH(aN) -2

1 _ N, — |k
= NP L L D(tn,an) Y g (k) 1{\k|§NQN}7X] L
kez aN
1 . _
= ZKO,&/,HN2[3+(4H+2) D(ty,an)"> Y gu(k)?
kEZ
A D) (S0 e 25 - S ) -2
kEZ kEZ

and since by (4.4)
1
D(tN, aN) = Ed(tN, aN,i)2 = —CTHK\I,’HJF%N(QHJ'_Q)(X + iK\p}HN6+(2H+1)a,
we obtain

1 1 -2
Tyin = ZKO_,&/,HN2B+(4H+2)Q (4K\1/,HNﬁ+(2H+1)a) ZgH(k)2
keZ

1
+1Ka&;7HN26+(4H+2)a
-2
1
% [(_C;LIKW’H+5N(2H+2)a + 4K‘117HN6+(2H+1)H> ( Ky, 7 NB+( 2H+1)a> ] ZgH
kez

1 . «
3 Koy NPT DD 1y )~ <ZQH L2y 2 = 3 g () )‘
kEZ keZ
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The first term in the above expression vanishes with 2 so it remains

TZ’I,N N2B+(4H+2)(x

-2
l( cH Ly NCH+2)a 4K\1, o NB+HEH+a ) <4K\IJ NP+ 2H+1)a> ] ZgH
keZ

K N2ﬁ+(4H+2)O¢D tNaaN (Z gH ]-{Uc\gNaN} ZQH > .
kezZ keZ

We have the following bound for the first summand in 75 ; x

-2 -2
1 1
(_C;IK\D,H+;N(2H+2)(X + 4K\I/7HNB+(2H+1)O() _ <4K\1;,HN’8+(2H+1)O‘>

< CNafﬁN2ﬁ+(4H+2)a'

To obtain a bound for the second term in the expression of Th;n, we write ), , g (k)? =
Zkeng(k)Ql{lkISNaN} + ZkEZgH(k) 1{\k|>NaN} and using the fact that |gH| is bounded by |k[*~ 4Q we
get that

| (tn,an)™ <ZQH 1{|k\§NaN} — ZQH )|

kEeZ kezZ
< CD(tN7aN)72NSZI\,{78Q+2 _ CN72,6’72a(2H+1)+(1 a)(8BH—-8Q+2)

Therefore
Ta1 | < NP (4.41)
For T5 5 v we have by (4.8) and Lemma 4.1

|T22,n| < cD(tn, GN)_QND‘_INO‘(ZLHM)QH,% (an)

LifQ > 2

—2 nra(4H+4
< D(tn,an) 2N ){N(l @H-1) if Q =1

- N2e=28 4f Q) > 2
— N2a72ﬁN(17a)(4H71) if Q =1.

Regarding T» 3 v we use (4.8) and Lemma 4.1 to get that

No
Tosn| < eD(tn,an) >N NI N " g1 (i = ) g1 (i — )
=1
C, ifQ>2

—2 ara(4H 3
< D(ty,an) >N ){Nu—a)(w—?) ifQ=1
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- Ne=Bif Q> 2
T | No NG @H=2) 4 = 1.

Combining (4.41), (4.42) and (4.42), we have the following bound for (4.40):

CNo—Bif Q> 2
|To | < {NaﬁN(la)(UI?) o1, (4.42)

Concerning 71 n, by the isometry of multiple integrals

2
Tiv =Var(|DFx|%) = E (|| DFx|l3 — E|DFx||%)

Nay
=E 4K0_\1/ g N 1D(tN,aN Z L(finan,i @ fin.an i) Fin,an i Finan,i)H
i,j=1
= 16K, 3 y N>V D(ty,an) ™
Ny
E Z I2(ftN,aN7i®ftN70«N,j)I2(ftN,aN7k®ftN,aN7l)<ftN,aN7i;ftNaaN7j>H<ftN7aNak7’ftNaanl>H
ig.k,l=1
Ny
:32K(;I?’HN2(Q_1)D(tN7aN)_4 Z (ft.ais friag)m(Frans Fra )1 Fin an i finan k)41 (Frangs fran)n
ig,k,l=1
Recall that for all integers p,q we have (see relation (4.5)) (fiap; ftaq) = cfa?\,H”gHJr (p —q) —
tay™ gu(p — q). Hence,
Ny .
_ o _ c o
Ty =32K5 3 y NI D(ty,an) ™ Y [5 N gy (i—j)— =ra %H“gH(z—ﬁ}
ig, ke l=1

t c t .
B gy 0= ) = B g )| | L - 1) = B g )

H tn .
B g -0 - Y gt - 1)
5
Z 1,4,N-

Above we denoted by 77 1,5 a product that depends only on functions gy and 7 2 v is a product that depends
only on one function gy (see (3.2)) and three functions gy 1. T1,3n is the product of two functions gy and
two JH+L- As well, T} 4 n contains three gy and one 941 while T3 5. n contains the four functions IH 1 To
study each term we will use the same technique of proof of the Theorem 7.3.1 in [16] or Lemma 3 in [12]. Let
gu,~N (k) :== |9 (k)|1{jkj<n,} (this is not the same as gn g in (4.6)) and gHJr%’N(k) = |gH+%(k:)\1{|k|§Na}.

Let u,v : Z — R be two sequences, we define their convolution by

(wxv)(k) =Y u(n)o(k - n).

n€E”Z
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We will need Young’s inequality, which can be written, for s,p,q > 1 such that % +1= % + é as

(@)

Now we can estimate each term 77 ; v, for i =1,...,5. First
5 o
IT1a.n] = 3200 AN D Za Dt an) ™ Y g = i)ga(k — V(i — k)gn (G —1)
4,4,k =1

Nay

< ONBHEO=2 Dt an) ™ Y > g (i — §)gun (k= Dgu n (i — k)gun (G — 1)
G k=14,1€Z
Nay

= CNOBHHO2H45D(ty ay)™ Z (9u.n * gu.n)(k — §)°
J k=1

= CNCHFO=2 NI Dt an) ™ gm.n * gu.n |2
< ONOBHE =148 D4 g )~ 4||9HN||?3 @)

where the last inequality follows from Young inequality
3
|T1 1 N| < CNa(8H+5) 1+4BD tN aN < Z |gH 4/3) )

The series ),y lgr (k)|[*/3 converges because |gz (k)| is bounded, for k large, by C|k|*#—*Q, see Lemma 4.3.
Finally,

Ty 1 n| < ONOL (4.43)
Next, we have
Ny
Tion = —CN* " UD(ty,an) *NOFEHED N g4 (i = j)ggy (k= Dgps (i = k)gres (G 1)
i,k 1=1
We apply the same idea as above
Nuy

[T12n] < CNZ(Q_l)D(tN, GN)_4N6NQ(8H+7 Z (i—y 9H+ (k- l)gH-&-%(i - k)9H+%(j —1)

Nay
< ONP=2HeBHEI Dty an) ™ Z Z 9N = )94 (k= D91 N —K)gm 1 v —1)
7,k=014,lEL
< CONPTHEH D an) ™ (gan * g2 n) (K Grr v * Gres n)(R)
keZ

< ONPHEIE Dty an) lgm N * gres e @ 9 v * G vz @)

< ONOTHBIEI Dy, an) ™ lga vl 4 19+ N||§ @
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9
4

4

N 3 N

= ONP=IHaGHE D1y ay) ™ ( Z |gH,N|§> ( Z |9H+;,N§>
k=N k=N

3 9

N 1 N 4
_38_ 4 4

< ONom301 ( > |9H,N|3> (Z |9H+;,N3> :

k=N

k=—N
Now, by Lemma 4.3, gH+%(k) is bounded for k large by C|k|*H+274Q and this yields to

N o(1) ifQ>2andQ=1,H <
Z |9m41 8] < {O(og(N))  ifQ=1H= 5
k=—N

16H—5

ON"35) ifQ=1,H> 2.

Recall that % < H < 1, hence

N4a—35—1 if Q Z 2
Mol S CF yoeenon o515 Q=1He (43 (4
In the same way,
Nay
| T13.v] = C [N*CONEIFO2 Dty an)™ Y7 guli— i)ga(k = Dgmypy (= K)gu ey (G- 1)
3,4,k =1
N % N %
g 4 1
< ON3e=26-1 ( Z |gH,N|3> < Z 9H+;,N|3> :
k=—N k=—N
Using the previous case we have
N3a—26-1 if Q > 9
T < _ - 4.4
Lan 2O {Nl“é a2l i Q=1,H € (4,3) 4
and as well,
Nay
T an| = C (N> DNCHEDEID @y an)™ Y guli— j)gu(k —Dgu(i — k)gy.1 (G —1)
3,5,k 1=1
N % N %
a— B 4 4
< ONZe—h-1 ( Z |gH,N|3> ( Z |9H+;,N3>
k=—N k=—N
which implies that
N2a—5—1 if Q > 9
T <C , - . 4.46
Tl < { N ra=b-1 §fQ—1,H e (},3) (449
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It remains to look at 77 5 n,

Nap
Ty 5N =C NQ(Q*I)NM(ZHH)D@M an)™* Z 9H+3 (1 — j)9H+%(k - 1)9H+%(i - k)9H+%(j —1)
i,4,k,0=1
N 3
B 4
< CNPa—16-1 ( > |9H+;,N|3>
k=—N
and this gives us
N5a—4ﬁ—1 if Q Z 2
Ty 53] < 16H+50—45—6 13
N ifQ=1Hc¢c(5, %)

Combining (34)—(38) we see that T3 1,y is the biggest term and finally we get a simple estimate for 77 y

Ty n| < ON*L (4.47)

By (4.42) and (4.47), we obtain the conclusion. O

Proof of Theorem 3.3. By Theorem 3.2 (applied to the scale Lay, L =1,...,d), we know that the each com-
ponent of the vector (Nl""Vn (tn, LaN))L:1 _, converges in distribution, as N — oo, to a centered Gaussian
random variable. By the main result in [19], it suffices to show that for every Ly, Lo =1,...,d

N “EVy(tn, Lian)Vn(tn, Laay)

converges as N — oo to I'r,, r,. We have

N "EVy(tn, Lian)Vn(ty, Laay)

2 l-a RESCS , N2
- D(tN,LmN)D(tN,LzaN)N ; ; (Ed(in, Lian,i)d(tn, Laan, 7))
where
Ed(tn, Lian,i)d(tn, Lean,j) = C7H“?VH+29L1,L2,H+%(Z}]') _ tZNa?vHHng,LQ,H(i,j)
and

Gis (i) = / / drdy® ()0 (y)| L1z — Loy + Ly — Laj|™.
RJR

We know (see Sect. 3.2 in [7] or Prop. 2.3 in [5]), that for every i,j large and for H € (3, 3),

9Ly, 20,1 (i, §)| < C(1+ |Lyi — Laj[*#—2@) (4.48)
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and1fH€(% )

Nrjan Negay

N D (G i,§))” = Noseo C(L1, Lo, H) (4.49)
Jj=1

with C(L1, Lo, H) being explicit constant. From Lemma 4.1, (4.49) and (4.48) we obtain the conclusion by
following the proof of Proposition 3.1. O

4.6.1. The case of fized time: Proof of Theorem 3.5

Now consider the random sequence (G )y>1 defined by (3.9). It satisfies EG% — 1 as N — oo and it admits
the following chaos expansion

1  1-a 1
Gy = —=N"2 V(t,an) = — N “D(t,an) "I i | (4.50)
V2 V2 ’ 2 e

From (4.50) and (A.4), the Malliavin derivative of Gy writes as

N
1 1o _
DGy = ﬁN 7 d(t,an) 2 (; ft,aN,i> fran,i

SO
IDGN 13
Nay N
=2N*"'D(t,ay)"? Z L(fran,i @ frani)fran. + 2N 'D(t,an) > Z ((Froanis fran.g))?
i,j=1 i,j=1
NG‘N
=2N“'D(t,an) D B frani @ frax.i)frax.; + EIDGN|.
ij=1
From Theorem 4.7,
1Gr.2) < ¢ (\fVar (1DGx ) + BIDGf —2)
=: C(\/TI,N + TQ’N).
We analyze first T n,
NLLN
IT1n| = [8N* "V D(t,an)~ Z fan(—5)funk =0 fan(i—k) fan(—1)
i,5,k,l=1

< ON'D(t,an) ™ fuv sz

3
Nay

< CON*'D(t,an)™? Z | frr v (K) |23
k=—Nay
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3
— ON®1D(t, ay)~* 22 [ Frn ()2 + | far, e ()2
1 —4 4/3 4/3 3
= ON“ Dt an) ™ (2 (D + | fun O
Ko 473 3
= OND(aw) (2 DG aw) )
3
a—1 —4 |K |4 4 1
< CN*'D(t,ay) (8 ~ia~ T4D{, an)l> Ni o
For T5 y we can write
Nay
To.n| = 2N°7'D(tan) ™ D ((franii fran i) — 2
i,j=1
_ a—1 -2 2 _ 2\ _
= 2N "'D(t,an)"? (Nay fu.n(0)? +2(Nay — 1) fr N (1)%) — 2|
) ) k2| C
= |[4N* ID(tvaN) 2(NaN_1)N2304 = N2a°

Therefore we obtain

Gy, 2) < ¢ ( Var (1DE|2,) + B|DFx| - 2)
=c L + 1
AN N2 )

5. ESTIMATION OF THE HURST PARAMETER

We will apply our theoretical results in Section 3 in order to construct an estimator for the Hurst parameter
of the solution to the stochastic wave equation (2.1). The estimator will be constructed by using the wavelet
variation (2.10). We will assume that the solution is observed at discrete points in space x; = 4,7 =1,..., N and
at a certain time ¢ (fixed or depending on N). Different estimators (but all of them constructed via the wavelet
variation) are obtained in these two situations treated in our work (moving or fixed time). While for fixed
time the logarithm of the variance of the wavelet coefficient depends linearly on H (Lem. 4.2), a linear log-log
regression will give the explicit form of the estimator. For fixed time, this variance of the wavelet coefficient have
a more complex dependence on the Hurst parameter (Prop. 4.4) and a different argument will be employed.

5.1. The moving time case

First we introduce a discrete version of the wavelet variation (2.10). Then we define an estimator in terms of
the discrete wavelet variation and we prove its asymptotic properties.

5.2. Discretization of the wavelet variation

We will use an estimator constructed by using the wavelet variation (2.10) or more precisely, by using its
discretized version defined below. Notice that the wavelet coefficient d(t, a, ) is defined as a continuous integral
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(see (2.9)) and it cannot be observed directly when the process u is observed. Therefore, by approximating the
integral in (2.9) by Riemann sums, we define the discrete wavelet coeffcient, for a > 0,¢ > 0,

en(t,a,i) = fZlf(—z)u(t,k). N >1.

Since ¥ has its support contained in the interval [0, 1], the above coefficient can also expressed as

~(t,a,i) \[Z\If( ) (t, k + ai). (5.1)

Let us also define the discrete version of the wavelet variation by setting

1
E l:E - t a, Z ) (5 2)
with, see notation (4.1),
t,a,t 1
éN(t7aai) = eN( 7a72) = eN(t7a7i)'

(E(d(a,t,i))2)? D(t,a)

In a first step, we will show that the sequence XA/N(t ~N,an) has the same limit behavior in distribution as
Vn(tn,an) when N goes to infinity. We need to assume some differentiability of the mother wavelet (several
examples satisfy this assumption, among others the Daubechies wavelet or the mexican hat wavelet, see [5] or

[7])-
Proposition 5.1. Suppose that ¥ € C™(R) with m > HTB Assume (2.11) with « € (%,1) and let
Vi (tn,an), Va(tn, an) be given by (2.10) and (5.2) respectively. Then

E )N* (VN(tN,aN) — V/N(tN,aN))] N 0.

Proof. We start by estimating the difference between the coefficient d(tn,an,?) and its discrete counterpart
en(tn,an,i) withi =1,..., N,, and with t5, ay as in (2.11). Let us compute the L?(Q)-norm of this difference.
We write

E (d(tn,an,i) — en(tn,an,i))” = Bd(tn, an, i) — 2Ed(ty, an,i)en (tn, an.i) + Eey (ty, an, i)

The first summand Ed(ty,ax,)? has already been computed in (4.3). Let us compute the other two terms.

For N >1andi=1,...,N,, we have from the covariance formula (2.6)

Eey(tn,an,i)? = — [XN: ( ) (l> Eu(ty, k+ ani)u(ty,l + ani) (5.3)

N g1=0 an
la

= — ZN: ( ) <k) C£|k_l|2H+1_tﬂ‘k_l|2H ﬂ
kl 0 an 4 2(2H+1)
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We used the fact that |k — | < ay = N® <ty = NP under (2.11), so the last summand in (2.6) vanishes. We

also have from (2.6), (2.9) and (5.1)

Ed(tn,an,i)en(tn,an,i)
[an]

_ Z v ( ) / de¥(2)Eu(ty, k + ani)u(tn, an( + i)

_[ZN:]\P( )/d W(2)

Via (4.3), (5.3) and (5.4),

t2H+1

CH oi+1 N 2H
“Hp _ N _N_
5 Ik —anal Ik —anel™ 4+ o

E (d(ty, an,i) — en(ty, ay,i))?

CH op 1 e k DN | — g2+
_ SH oH+2 [ - \IJ()\I/() +//dxd () oz — y|2H+
> a2 ) ) e [ [ ardyu(@)e)ie -y
lan]
1 k 2H+1

2Z\If<>/da;\1/ ’kfi

AN 120 an/ Jr

CH of+1 o) k l .
TN > v an v a dxdy\If )|z — v

k,1=0

2 [GN]\IJ dw () |k — N[
-o Y (o) favele- o
t?\/HH 1 [an] k I
N - Ny e ).
+2(2H+1) an Z (aN> (GN)

k,i=0

Now we use the following bounds (we refer to [5] for their proofs, see also [7]) for N large

[an]
1 k l
I <GN> v (GN>
N k.1=0

and

%xp( >/da:\1/ ‘kf— Hf/R/Rdxdy\Il(x)\Il(yﬂxfyFH gc%

and, for ¥ of class C™(R),

//da:dy‘ll (y)|z — y|*H <C
an’

(5.4)

(5.7)
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with C' > 0 not depending on N. By using the inequalities (5.6), (5.7) and (5.8) in (5.5), we obtain

E(d(tn,ami) — eN(tN7aN7i))2 S C [CL?VH+1 + tNa?VH + t?VH+1CL}V72m]

<C [N(2H+1)a 4+ NA+2Ha | N(2H+1),6+a(1—2m)} _
For the renormalized coefficients, we have the estimate

~ 2
E (d(tu,an,i) — én(ty,an.1)) = Dity,an) "E (dltu, an, i) — en(ty, an, 1))’

< CN-B+@H+Da [N(2H+1)a 4 NAt2Ha | N(2H+1)ﬁ+o¢(1—2m)j|

—C |:N7['3 +N@ +N2Hﬁfa(2m+2H):| )

If m > 22 then foralli =1,..., N,

) an

~ 2
E <d(tn,aN,i) — éN(tN,aN,i)> < CN™“.

(5.10)

Finally, we regard the L'(2)-norm of the difference Vy(tx,an) — VN(tN,aN). By using Cauchy-Scwarz

inequality as proceeding as in the the proof of Lemma 1 in [7], we can write, with Cy,Cy > 0,

E ‘VN(tN7 an) — ‘7N(tNa aN)’

N|=

N,
1 <R/~ N~ 2\ 2
<O N ZE(d(tN,aN,Z)*SN(tN,aN,Z))
AN =1

2
)
W=

1 X ~ ~ 2
x| Cy+2 E(d(tN,aN,i)—eN(tN,aN,i)>

and by (5.10),

=

~ o 1 a
E ’VN(tNyaN) - VN(tN;ClN)‘ <CN~ =2 (C+ NO‘) < CN™ 2.

Consequently,

~

E ‘N“T“ (VN(tN,aN) - VN(tN,aN))‘ <ON'3*N-% =CNi-e

and the conclusion is obtained since a > %

O

As a consequence of the above result, the discrete wavelet variation ‘//\'N(t ~N,an) has the same limit in law as

VN(tN, aN).

Corollary 5.2. Let the assumptions in Proposition 5.1 prevail and let ‘/}N be given by (5.2). Then the d-

dimensional random wvector (Nl_Ta ‘A/N(tN,LaN)> . converges in distribution, as N — oo, to a centered
1

yeuny
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d-dimensional Gaussian vector with covariance matriz I' = (I'r, r,)p ., 4 where the matriz I' is given by

(3.5).

Proof. The proof immediately follows from Theorem 3.3 and Proposition 5.1. O

5.3. The definition of the estimator
Let us denote, for t > 0,a >0

Sn(t,a) := NiZd(t,a,i)Q. (5.11)

Notice that the sequence Sy (t,a) is related to the wavelet variation Vy(t, a) in (2.10) as follows
Sn(t,a) = D(t,a) (Vn(t,a) + 1) (5.12)

with D(t,a) defined by (4.1). Let d > 1 and assume (2.11). By taking the expectation in (5.11) (note that
EVn(tn,an) = 0), we have, for every L =1,...,d, by using Lemma 4.1,

1
N—P=CHIDegg\ (ty, Lay) = N~P~CHDe D¢\ Lay) N 1K n L2 >0
—+0o0

with Ky g from Lemma 4.1. We write the above relation for ¢ty = t1,, (which means that we replace ty = NP8
by LPN®? in (4.3). To do this, we will assume that in the sequel @3 > 1 and with this assumption all our
theoretical results (such as Thm. 3.3) can be applied. So

1
NPT CHEDES N (tray, Lay) = N™P TG D(ty 0 Lay) | — 2Ky g L7200 >0 (5.13)
—400

The above relation (5.13) implies, for N > 1,

log E(SN(tray, Lan)) = log(D(tray, Lan)
1
= (B+2H +1)alog N + (8 +2H 4 1)log L + log <4Kq;,H> +log(1 +en)
1
= (B+2H +1)(alog N +log L) + log (4K\p,H> +log(1+en)

= (f+2H + 1)log(Lay) + log <iK\p7H) +log(1+en) (5.14)

where (ex)n>1 is a a deterministic sequence defined by, for every N > 1,
1 -1
EN = <4K\I/,HL2H+1> N_'B_(2H+1)QESN(tN,LaN) —1

-1
1
= (4K@,HL2H+1> N=B=CHIDep ) Lan) —1 = N_yoo 0.
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Let us also introduce the discretized counterpart of Sy (t,a), i.e.

(l

N,
Sn(t,a):= Z (t,a,i)? = D(tay,an)(1 4 Vy(tay,an)) (5.15)

with ey from (5.1).
The above relation (5.14) inspires the following definition of the estimator for the Hurst parameter

2Hy +B+1=(X"X)'XxTY (5.16)
where T denotes the transpose and with the notation

=log(Lan)r=1,....d = (alogN +logL) =1, qand Y = (10g §N(tLaN,LaN))L g (5.17)

Equivalently, we have

~ 1 1 L log(L 1
HN:§(XTX) 1Ty _ Z 08 Sn(tLay, Lay)log(Lay) _7_2

227 57 (og(Lan)? 2 (319

with X, Y from (5.17).

Remark 5.3. 1. The following heuristics leads to the expression (5.16):

e We approximate E(Sy(tray, Lan) by Sn(tray, Lan) and then log Sy (tray,an) by loggN(tLaN,aN).
e In the expression

~ 1
log(Sn(tray,Lan)) ~ (8 +2H + 1)log(Lay) + log <4K\p,H> +log(l+en)

we use a log-log regression of (log(Sn(tray,Lan));—; 4 on (logLan)p=1,.4= (+1logL)r=1, . 4

,,,,,

i.e. we minimize with respect to H € (%, 1) the function

d
Z log S (tLay, Lan) — (2H + 1+ B)log(Lay))* .

2. Notice that the estimator (5.18) is expressed in terms of the sequence (5.15) which depends on the
discrete wavelet coefficients en. Therefore, the estimator can be computed from the data, that is, from
the observations u(t, k), k = 1,2,..., N with t = t,,, = N®% with a8 > 1. So, if we have at our disposal
N observations in space, one needs to be able to observe them at time N2. Recall that in practice our
wave equation describes the vertical displacement of a vibrating string under a random force. This means
that the observation time of the vibrating time should be sufficiently long and it is related to the number
of spatial observations.

Using Theorem 3.3, we can deduce the limit behavior of the estimator H N-

Theorem 5.4. Consider the estimator ﬁ'N given by (5.18). Let the assumptions in Proposition 5.1 prevail.
Assume also aff > 1. Then the estimator (5.18) is stronly consistent and

2a(log N)N *=* (HN - H) =@ N (0,T(L,...,1)7) (5.19)
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with the matriz T' defined by (3.5).
Proof. From (5.15) and (5.14), we have for large enough N,

log Sy (tLay, Lan) =log D(tray, Lan) + log (1 + vN(tLaN»LaN))
= (8+2H +1)log(Lay)

1 ~
+ log <4K\1,7H> + log (1 + VN(tLaN,LaN)) +log(l+en)
with ex defined in Section 5.3. By plugging the above relation into (5.18), we obtain, for N large,

>4, log(Lay)
> (log(Lay))?

log (§Kw,u) X7, log(Law)
Y71 (log(Lay))?
Zszl 10g(LaN)
>¢_, (log(Lay))>?

B+2Hy+1=8+2H+1+ +10g(1 + Vi (tpay, Lay))

+log(1l +en)

and so

Z%:l IOg(LaN)

_ log (iK\I/,H) Zszl log(Lan)
>4 (log(La))?

Y7 (log(Lay))?
g log(Lay)
7 (log(Lay))?

2(Hy — H) +log(1 + Vn(tray, Lax))

+log(1+en)

Note that ?N(ta ~» @) converges to zero almost surely as N — oo, this is a consequence of Proposition 3.1 and
of a standard Borel-Cantelli argument, see e.g. [24]. Therefore, as e tends to zero we get that Hy —n—00 H
almost surely and by using Theorem 3.3 we obtain the convergence (5.19). O

5.4. Estimation when the time is fixed

Assume now that the time ¢ is fixed, as in (2.12). We would like to estimate the parameter H of the mild
solution (2.4) based on the observation of the solution at a fied time and at discrete points in space. The result
in Proposition 4.4 shows that the behavior of the wavelet coefficient is not a power-function with exponent
depending on H and their relationship is more complex. Actually

Ed(t,an,i)? = [K14(H) + K21 (H)N™®] = N0 K1,(H) (5.20)

N,

anN

with K1 4(H), K2 (H) from Proposition 4.4. Therefore the log-log regression argument employed above cannot
work when the time is fixed. We proposed and alternative method via the analysis of the constant K; ,(H).
Consider the sequence Sy given by (5.11) and assume now (2.12). By Proposition 4.4,

ESy(t,an) = D(t,an) = K1+(H) + Ka(H)N™® —n_yo0 K1.4(H) (5.21)

with K ((H) = 2(H1+1)t2H+27 see (4.10). By approximating, as usual, ESx (¢, an) by Sy (t,an), we can say that

for N large enough, Sn(t,an) is close to Ky ,(H).
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Lemma 5.5. For some t > 0 sufficiently large (not depending on N ), the equation
SN(t, aN) — Kl,t(x) =0 (5.22)

has a unique solution in the interval [%, 1].

Proof. Consider the function
fni(H) = Sn(t,an) — Ki,.(H)

with H € [5,1]. We have

Floa(e) = o Ko () = ~ LD ogt 4 fo(H)2+2

with
filH) = >0
YT aH )
and fo(H) = m for H € [$,1]. When t — oo, this derivative behaves as fi(H)t*# 2 logt so it is positive

by choosing a suitable time ¢ large enough. Consequently, the function fy: is invertible on [%, 1] and the
conclusion follows.

We will assume in the sequel that ¢ is large enough in order to ensures the existence and uniqueness of the
solution to (5.22).

Definition 5.6. We define Hy to be the unique solution of the equation (5.22).
We derive the asymptotic properties of the estimator H N-

Proposition 5.7. The estimator ﬁN from Definition 5.6 is strongly consistent. Moreover, it satisfies the
following limit behavior in distribution

N (Hy -H) -, N (o, 2K 4(H)? ((5{1«;3(}1))2) . (5.23)
Proof. By Lemma 5.5, for some t > 0
Sn(t,an) = K14 (Hy)
and from (5.12),
Sn(t,an) = D(t,an)(1+ Vn(t,an)).
Thus

Ki14(Hy) = D(t,an)(1 + Vn(t, an)).
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We let N — oo above. Since Viy (¢, an) tends to zero almost surely and D(t, an) converges to K1 ,(H) as N — oo,
we get

lim Kl’t(IA{N) = K1, (H) almost surely. (5.24)

N— 00

By the proof of Lemma 5.5, we deduce that K; g is invertible on [%,1] and its inverse is continuously

differentiable on this interval. By applying Kftl to (5.24) we deduce that ﬁN — N_oo H almost surely.
Let us show that the estimator is asymptotically normal. Indeed, from (5.12)

1

m (SN(t,aN) - D(t,aN)) = VN(t;aN)

and consequently, in distribution, by Theorem 3.5

1 1—a 1
EN P m (SN(t,aN) - D(t,aN)) — N—o00 N(O7 1)

Given the asymptotic behavior of D(¢,an) (see 5.21)), we can write
Lo A
N (K o(Hx) = Kia(H)) =50 N0, 2Ky (H)?).

By using the delta-method with the continuously differentiable function K7 tl on [%, 1], we obtain (5.23). O

Let us end this statistical inference part with some comments:

Remark 5.8. 1. There exist alternative ways to estimate the Hurst parameter for ¢ fixed by exploiting the
relation (5.20). But using this result for different fixed times ¢1,...,tq > 0, and by applying a nonlinear
least-squares regression of Sy (¢;,an) on t; with ¢ =1,...,d we can obtain another estimator for H (which
should be, in principle, consistent and asymptotically normal). Being related to nonlinear regression,
it analysis could be more complex but probabably we can avoid the restriction of ¢ large, assumed in
Proposition 5.7.

2. The estimator from Definition 5.6 is based on the variation Sy (t,a,?) which is written in terms of the
continuous wavelet transforms d(t,a,i) and the of the inverse function K !. While the inverse can be
(at least numerically) computed, the wavelet coefficients are not directly computed from the observations
u(t,k),k =1,...,N. An approach to compute them is use Riemann sums approximations, as in (5.1).
Another possibility is to use a pyramidal multiresolution algorithm (see for example the survey [6]).

3. Other methods (not based on wavelets) to estimate the Hurst parameter based on observations of (2.4)
at fixed time are obtained via the generalized spatial variations of the solution (see e.g. [12] or [22]).

APPENDIX A.

The basic tools from the analysis on Wiener space are presented in this section. We will focus on some
elementary facts about multiple stochastic integrals. We refer to [17] for a complete review on the topic.

Consider H a real separable infinite-dimensional Hilbert space with its associated inner product (.,.),,, and
(B(¢), € H) an isonormal Gaussian process on a probability space (2,F,P), which is a centered Gaussian
family of random variables such that E (B(p)B(1)) = (@, 1), for every ¢, € H. Denote by I, the gth multiple
stochastic integral with respect to B, which is an isometry between the Hilbert space H®? (symmetric tensor
product) equipped with the scaled norm ﬁ” - |[geq and the Wiener chaos of order ¢, which is defined as the
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closed linear span of the random variables H,(B(y)) where ¢ € H, ||¢||% = 1 and H, is the Hermite polynomial

of degree ¢ > 1 defined by:
22\ a4 x?
Hy(x) = (—1)7exp <2> 17 (exp (2>) , ¢ €R. (A1)

The isometry of multiple integrals can be written as follows: for p, ¢ > 1, f € H®P and g € H®?

q!<fa§>?-[®‘1 lfp: q,

0 otherwise.

We have the following product formula: if f € HOP and g € H®Y, then

B0 = S 1 (2) (N hsacar (70 (A3

r
r=0

where f ®, g denotes the contraction of order r =0,1,...,pAgq.

We denote by D the Malliavin derivative operator that acts on cylindrical random variables of the form
F =g(B(¢1),...,B(en)), where n > 1, g : R™ — R is a smooth function with compact support and ¢; € H in
the following way

DF =" 22 (Be),... Blon))on

The operator D is closable and it can be extended to the closure of the set of cylindrical random variables
(denotes D?2) with respect to the norm

|F|I% 2 := E|F|” + E| DF|3.
If F = I,(f) with f € H®P and p > 1, then

DF = plp1 (f(,%)) (A4)

Wy ”

where “x” stands for p — 1 variables.
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