Open Access
Issue
ESAIM: PS
Volume 25, 2021
Page(s) 133 - 203
DOI https://doi.org/10.1051/ps/2021006
Published online 23 March 2021
  1. Y. Ait-Sahalia and J. Jacod, High-Frequency Financial Econometrics. Princeton University Press, 1 edition (2014). [Google Scholar]
  2. Y. Aït-Sahalia and J. Jacod, Semimartingale: Itô or not? Stochastic Process. Appl. 128 (2018) 233–254. [Google Scholar]
  3. V. Anh and J. Yong, Backward stochastic Volterra integral equations in Hilbert spaces. In Differential & difference equations and applications. Hindawi Publ. Corp., New York (2006) 57–66. [Google Scholar]
  4. D. Becherer, Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16 (2006) 2027–2054. [Google Scholar]
  5. M.A. Berger and V.J. Mizel, Volterra equations with Itô integrals. I. J. Integral Equ. 2 (1980) 187–245. [Google Scholar]
  6. M.A. Berger and V.J. Mizel, Volterra equations with Itô integrals. II. J. Integr. Equ. 2 (1980) 319–337. [Google Scholar]
  7. N. Bouleau and L. Denis, Dirichlet forms methods for Poisson point measures and Lévy processes. With emphasis on the creation-annihilation techniques. Vol. 76 of Probability Theory and Stochastic Modelling. Springer, Cham (2015). [CrossRef] [Google Scholar]
  8. Ph. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, Lp solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 (2003) 109–129. [Google Scholar]
  9. F. Confortola, M. Fuhrman and J. Jacod, Backward stochastic differential equation driven by a marked point process: an elementary approach with an application to optimal control. Ann. Appl. Probab. 26 (2016) 1743–1773. [Google Scholar]
  10. C. Dellacherie and P.-A. Meyer, Probabilités et potentiel. Théorie des martingales. Chapitres V à VIII. Hermann, Paris (1980). [Google Scholar]
  11. Ł. Delong, Backward stochastic differential equations with jumps and their actuarial and financial applications. BSDEs with jumps. European Actuarial Academy (EAA) Series. Springer, London (2013). [Google Scholar]
  12. G. Di Nunno, B. Øksendal and F. Proske, Malliavin calculus for Lévy processes with applications to finance. Universitext. Springer-Verlag, Berlin (2009). [Google Scholar]
  13. J. Djordjević and S. Janković, On a class of backward stochastic Volterra integral equations. Appl. Math. Lett. 26 (2013) 1192–1197. [Google Scholar]
  14. J. Djordjević and S. Janković, Backward stochastic Volterra integral equations with additive perturbations. Appl. Math. Comput. 265 (2015) 903–910. [Google Scholar]
  15. N. El Karoui and S.-J. Huang, A general result of existence and uniqueness of backward stochastic differential equations. In Backward stochastic differential equations (Paris, 1995–1996). Volume 364 of Pitman Res. Notes Math. Ser. Longman, Harlow (1997) 27–36. [Google Scholar]
  16. N. El Karoui, S.G. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. Hu and B. Øksendal, Linear Volterra backward stochastic integral equations. Stochastic Process. Appl. 129 (2019) 626–633. [Google Scholar]
  18. J. Jacod, Calcul stochastique et problèmes de martingales. Vol. 714 of Lecture Notes in Mathematics. Springer, Berlin (1979). [CrossRef] [Google Scholar]
  19. J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes. Vol. 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition (2003). [CrossRef] [Google Scholar]
  20. A.M. Kolodiĭ, Existence of solutions of stochastic Volterra integral equations. In Theory of random processes, No. 11. “ Naukova Dumka”, Kiev (1983) 51–57. [Google Scholar]
  21. A.M. Kolodiĭ, Existence of solutions of stochastic integral equations of Itô-Volterra type with locally integrable and continuous trajectories. In Theory of random processes, No. 12. “ Naukova Dumka”, Kiev (1984) 32–40. [Google Scholar]
  22. S.G. Kreĭn, Yu. Ī. Petunīn and E.M. Semënov, Interpolation of linear operators. Translated from the Russian by J. Szűcs. Vol. 54 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1982). [Google Scholar]
  23. T. Kruse and A. Popier, Bsdes with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 88 (2016) 491–539. [Google Scholar]
  24. T. Kruse and A. Popier, Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 89 (2017) 1201–1227. [CrossRef] [Google Scholar]
  25. E. Lenglart, D. Lépingle and M. Pratelli, Présentation unifiée de certaines inégalités de la théorie des martingales. With an appendix by Lenglart. In Seminar on Probability, XIV (Paris, 1978/1979) (French). Vol. 784 of Lecture Notes in Math. Springer, Berlin (1980) 26–52. [Google Scholar]
  26. J. Lin, Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stochastic Anal. Appl. 20 (2002) 165–183. [Google Scholar]
  27. P. Lin and J. Yong, Controlled singular volterra integral equations and pontryagin maximum principle. SIAM J. Control Optim. 58 (2020) 136–164. [Google Scholar]
  28. W. Lu, Backward stochastic Volterra integral equations associated with a Levy process and applications. Preprint arXiv:1106.6129 (2011). [Google Scholar]
  29. C. Marinelli and M. Röckner, On maximal inequalities for purely discontinuous martingales in infinite dimensions. In Séminaire de Probabilités XLVI. Vol. 2123 of Lecture Notes in Math. Springer, Cham (2014) 293–315. [Google Scholar]
  30. L. Overbeck and J.A.L. Röder, Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle. Probab. Uncertain. Quant. Risk 3 (2018) 4. [Google Scholar]
  31. A. Papapantoleon, D. Possamaï and A. Saplaouras, Existence and uniqueness results for BSDE with jumps: the whole nine yards. Electr. J. Probab. 23 (2018) EJP240. [Google Scholar]
  32. E. Pardoux and S.G. Peng, Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55–61. [CrossRef] [MathSciNet] [Google Scholar]
  33. E. Pardoux and P. Protter, Stochastic Volterra equations with anticipating coefficients. Ann. Probab. 18 (1990) 1635–1655. [Google Scholar]
  34. E. Pardoux and A. Rascanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Vol. 69 of Stochastic Modelling and Applied Probability. Springer-Verlag (2014). [CrossRef] [Google Scholar]
  35. P.E. Protter, Volterra equations driven by semimartingales. Ann. Probab. 13 (1985) 519–530. [Google Scholar]
  36. P.E. Protter, Stochastic integration and differential equations. Vol. 21 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, second edition (2004). [Google Scholar]
  37. Y. Ren, On solutions of backward stochastic Volterra integral equations with jumps in Hilbert spaces. J. Optim. Theory Appl. 144 (2010) 319–333. [Google Scholar]
  38. D. Revuz and M. Yor, Continuous martingales and Brownian motion. Vol. 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition (1999). [Google Scholar]
  39. R. Situ, Theory of stochastic differential equations with jumps and applications. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2005). [Google Scholar]
  40. H. Wang, J. Sun and J. Yong, Recursive Utility Processes, Dynamic Risk Measures and Quadratic Backward Stochastic Volterra Integral Equations. Preprint arXiv:1810.10149 (2018). [Google Scholar]
  41. T. Wang, Lp solutions of backward stochastic Volterra integral equations. Acta Math. Sin. (Engl. Ser.) 28 (2012) 1875–1882. [Google Scholar]
  42. T. Wangand J. Yong, Comparison theorems for some backward stochastic Volterra integral equations. Stochastic Process. Appl. 125 (2015) 1756–1798. [Google Scholar]
  43. T. Wang and J. Yong, Backward stochastic Volterra integral equations—representation of adapted solutions. Stochastic Process. Appl. 129 (2019) 4926–4964. [Google Scholar]
  44. Z. Wang and X. Zhang, Non-Lipschitz backward stochastic Volterra type equations with jumps. Stoch. Dyn. 7 (2007) 479–496. [Google Scholar]
  45. J. Yong, Backward stochastic Volterra integral equations and some related problems. Stochastic Process. Appl. 116 (2006) 779–795. [Google Scholar]
  46. J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations. Probab. Theory Related Fields 142 (2008) 21–77. [CrossRef] [Google Scholar]
  47. J. Yong, Backward stochastic Volterra integral equations—a brief survey. Appl. Math. J. Chinese Univ. Ser. B 28 (2013) 383–394. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.