Open Access
Volume 22, 2018
Page(s) 163 - 177
Published online 16 November 2018
  1. P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, coherent measures of risk. Math. Finance 9 (1999) 203–228. [CrossRef] [MathSciNet] [Google Scholar]
  2. O. Bardou, N. Frikha and G. Pagès, Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling. Monte Carlo Method. Appl. 15 (2009) 173–210. [CrossRef] [Google Scholar]
  3. B. Brahimi, B. Fatah and Y. Djabrane, Copula conditional tail expectation for multivariate financial risks. Arab J Math. Seci. 24 (2018) 82–100. [Google Scholar]
  4. H. Cossette, M. Mailhot, É. Marceau and M. Mesfioui, Bivariate lower and upper orthant value-at-risk. Eur. Actuar. J. 3 (2013) 321–357. [CrossRef] [Google Scholar]
  5. H. Cossette, M. Mailhot, É. Marceau and M. Mesfioui, Vector-valued tail value-at-risk and capital allocation. Methodol. Comput. Appl. Probab. 18 (2016) 653–674. [CrossRef] [Google Scholar]
  6. A. Cousin and E. Di Bernardino, On multivariate extensions of value-at-risk. J. Multivar. Anal. 119 (2013) 32–46. [CrossRef] [Google Scholar]
  7. A. Cuevas, W. González-Manteiga and A. Rodríguez-Casal, Plug-in estimation of general level sets. Aust. N. Z. J. Stat. 48 (2006) 7–19. [CrossRef] [Google Scholar]
  8. E. Di Bernadino and T. Laloë, Estimating level sets of a distribution function using a plug-in method: a multidimensional extension. Preprint arXiv:1202.2035 (2012). [Google Scholar]
  9. E. Di Bernardino, T. Laloë, V. Maume-Deschamps and C. Prieur, Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory. ESAIM: Probab. Stat. 17 (2013) 236–256. [CrossRef] [Google Scholar]
  10. P. Embrechts and G. Puccetti, Bounds for functions of multivariate risks. J. Multivar. Anal. 97 (2006) 526–547. [CrossRef] [Google Scholar]
  11. European Commission, Solvency II (2014), [Google Scholar]
  12. E.W. Frees and E.A. Valdez, Understanding relationships using copulas. North Am. Actuar. J. 2 (1998) 1–25. [CrossRef] [Google Scholar]
  13. E. Jouini, M. Meddeb and N. Touzi, Vector-valued coherent risk measures. Finance Stoch. 8 (2004) 531–552. [Google Scholar]
  14. E. Lépinette and I.B. Tahar, Vector-valued coherent risk measure processes. Int. J. Theor. Appl. Finance 17 (2014) 1450011. [CrossRef] [Google Scholar]
  15. M. Mailhot and M. Mesfioui, Multivariate TVaR-based risk decomposition for vector-valued portfolios. Risks 4 (2016) 33. [CrossRef] [Google Scholar]
  16. G. Mainik and E. Schaanning, On dependence consistency of covar and some other systemic risk measures. Stat. Risk Model. 31 (2014) 49–77. [Google Scholar]
  17. J. Nešlehová, On rank correlation measures for non-continuous random variables. J. Multivar. Anal. 98 (2007) 544–567. [CrossRef] [Google Scholar]
  18. OSFI, Minimum capital test for federally regulated property and casualty insurance companies. (2015), [Google Scholar]
  19. R.T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk (2000). [Google Scholar]
  20. R.T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions. J. Bank. Finance 26 (2002) 1443–1471. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.