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A CONSISTENT ESTIMATOR TO THE ORTHANT-BASED TAIL
VALUE-AT-RISK™ ™™

NicHOLAS BECK! AND MELINA MAILHOT?*

Abstract. In this paper, we address the estimation of multivariate value-at-risk (VaR) and tail value-
at-risk (T'VaR). We recall definitions for the bivariate lower and upper orthant VaR and bivariate lower
and upper orthant TVaR, presented in Cossette et al. [Eur. Actuar. J. 3 (2013) 321-357 or Methodol.
Comput. Appl. Probab. (2014) 1-22]. Here, we present estimators for both these measures extended to
an arbitrary dimension d > 2 and establish the consistency of our estimator for the lower and upper
orthant TVaR in any dimension. We demonstrate these results by providing numerical examples that
compare our estimator to theoretical results for both simulated and real data.
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1. INTRODUCTION

Evaluating risk is a crucial task in many industries, particularly in finance and insurance. Regulators estab-
lish solvency capital requirements and risk allocation in order to protect stakeholders and customers. With the
increasing strictness of solvency requirements in recent years, see for instance OSFI [18] or Solvency II [11] reg-
ulations, more research is becoming available on the development of the appropriate measures. In the univariate
setting, for a random variable (rv) X and cumulative distribution function (cdf) Fx, the value-at-risk (VaR) at
level @ € (0,1) defined by

VaR,(X) = inf{z e R: Fx(z) > a},

is often used for capital allocation requirements. However, it has become increasingly criticized for its lack of
coherence, as defined by Artzner et al. [1]. Specifically, VaR is not a subadditive risk measures. Moreover, it
provides little information about the tail of a distribution. As an alternative to VaR, other measures exist that
do recognize the risk in the tail and are subadditive. One such measure is the tail value-at-risk (TVaR), defined
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1
TVaRa(X) = ﬁ / VaR, (X)du.

TVaR allows one to calculate the average loss at level o given that the loss is greater than the a-level VaR.

Recently, there has been an ample amount of research conducted on the development of extensions of VaR
and TVaR, as well as other risk measures, in the multivariate setting. Embrechts and Puccetti [10] were first to
introduce the notion of multivariate VaR through use of level sets. Jouini et al. [13] presents the multivariate
worst conditional expectation (WCE), from an axiomatic representation of multivariate risk measures. In [14],
using the framework established in [13], WCE is studied and the Generalized WCE is defined. Vector-valued
risk measures for conditional tail expectation (CTE), conditional VaR (CVaR) and VaR are presented in [3],
[16] and [6], respectively, the last of which differing from the level set definition of [10].

Much work has also been devoted to the efficient computation of these values in the empirical setting.
In particular, the VaR and CVaR have received a lot of attention. Rockafellar and Uryasev [19] develop the
idea of optimizing CVaR (and by consequence, VaR) for continuous distributions. Specifically, they show that
calculation of CVaR can be written in terms of a convex optimization problem making it easy to calculate and
estimate. Additionally, the methods developed here allow for one to skip calculating VaR entirely, which can
drastically decrease computation time. Rockafellar and Uryasev [20] further develop these concepts in the case
of more complicated distributions which might be more representative of real world situations. Bardou et al. [2]
take these ideas a step further by first developing a stochastic gradient descent algorithm in tandem with
the CVaR representation of Rockafellar and Uryasev [19, 20]. They continue to streamline the algorithm by
incorporating importance sampling. Specifically, they allow for a moving sequence of significance levels which
can further improve efficiency and decrease estimation error. These methodologies allow them to establish several
central limit theorem (CLT) type results for their estimation procedures.

In this paper, our focus is on the consistent estimation of the multivariate lower and upper orthant VaR and
TVaR. The lower (upper) orthant VaR was introduced by Embrechts and Puccetti [10], in the bivariate context,
as a level set generated by the cdf (survival function (sf)) of a random vector X. Both the orthant VaR and
TVaR were later developed by Cossette et al. [4, 5], respectively, with multivariate extensions of each discussed
in [15]. In the univariate context, estimators of VaR and TVaR can be written

VaR,(X) =inf{x € R: F,(x) > a}, (1.1)

and

1
TVaR}(X) = ;— / VaR™(X)du, (1.2)

where F), is the empirical cdf. Using the reparametrization of the orthant VaR introduced by Cossette et al. [4],
we may write the estimators for the multivariate orthant VaR and TVaR in a similar fashion to (1.1) and (1.2),
respectively. We will call these the empirical orthant VaR and TVaR. With consistency results established by
Di Bernardino et al. [9], we can prove that the empirical orthant VaR is consistent for the true multivariate
orthant VaR. Finally, the consistency of the empirical orthant TVaR, is shown using the dominated convergence
theorem. Note that we focus on consistency in the lower orthant, however, the results are easily extendable
to the upper orthant. To estimate our measures, we will use Monte Carlo simulations. However, many of the
techniques outlined above could certainly be incorporated and provide an avenue for further research.

The paper is organized as follows. In Section 2, we present the orthant-based VaR and recall some results
that will be needed to establish the consistency of its estimator. We end the section by introducing the orthant-
based TVaR, as defined by Cossette et al. [5]. In Section 3, we turn our attention to the estimation of the
orthant-based TVaR. Here, our estimator is introduced and its almost sure consistency is established. Section 4
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demonstrates a few examples of this estimator with simulated data as well as comparisons to the multivariate
CTE of Di Bernardino et al. [9] using the lossALAE data set of Frees and Valdez [12]. Concluding remarks and
further research interests are given in Section 5.

2. NOTATION AND PRELIMINARIES

We introduce some of the notation and definitions that will be of use throughout the paper. We consider
the random vector X = (X1,...,X,) € Ri of dependent risks with joint cdf F' and joint sf F. Additionally, we
define the random vector X\; = (X1,..., X;_1, Xsy1,..., Xq) with cdf F; and sf F\i, i1 =1,...,d. Similarly,
for € = (21,...,2q) € Ri, a realization of X, consider the vector @\; = (21,..., %1, %it1,. .. ,xq) and the
functions

Fp. . :xz;— F(x) and F‘m\i cxy e F(x).

\i

Now, we define the lower and upper orthant VaR. As our applications are in actuarial science, we are often
dealing with losses that are positively valued. Therefore, we have restricted ourselves to the positive orthant of
R,

Definition 2.1. For a random vector X = (X,..., Xy) with joint cdf F', we define the lower orthant VaR by
VaR, (X) = 0{z € RY : F(z) > o}

d
-U {(xl,...,xi,l,ma@\i(){),xm,...,xd) c2; > VaRa(X;), Vj # z} (2.1)
=1

where JA represents the boundary of a set A. Moreover, the lower orthant VaR for a rv X; when X\; = x\; is
given by

VaR, X) =inf{z; € Ry : Fp (%) > a}.

o

Similarly, we define the upper orthant VaR as follows.

Definition 2.2. For a random vector X = (X1,..., Xy) with joint sf ' we define the upper orthant VaR by
VaRq(X) =9{z € RL: F(z) <1 - a}
d
= U {(1‘17 Ce ,xi,l,VaRa@\i(X),le, e ,Qid) 1z < VaRa(Xj), V] 7é i}, (22)
i=1
where

VaRae,(X) = inf{z; € Ry : Fp () <1—a}

is the upper orthant VaR for a rv X; when X\; = ;.

Remark 2.3. It should be noted that both the existence and finiteness of VaRa’w\i(X) and VaRg ., (X)
is linked directly to the existence and finiteness of VaR,(X;) for i = 1,...,d. Recall that VaR,(X) exists
and is finite for all a € (0,1) but may take values at infinity for o = 1. Thus, the existence of VaR,, 4., (X)
(X) and

and VaRa,x,,(X) is guaranteed given the existence of its univariate counterparts. Similarly, VaRa,m\i
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VaRa,z,, (X) are finite, except asymptotically, where Cossette et al. [4] showed that

li VaR . (X)=ux, Vj#i
L dm VAR, (X) =, VA

where uy, = sup{z : x € supp(X;)} is the essential supremum of X;. A similar result exists for VaRq ., (X)
and the essential infimum of X;.

Remark 2.4. It can be seen that both Fy,,(2;) = F(x) and Fy,,(z;) = F(x). However, this notation is used
throughout to emphasize the process when calculating orthant VaR and TVaR. For these calculations, one fixes
all random variables but one and calculates the required value for the final unfixed random variable.

Remark 2.5. For simplicity, we will restrict ourselves to formulations (2.1) and (2.2). Additionally, for
brevity, we rewrite each point in the unions of (2.1) and (2.2) by (m\i,VaRayw\i (X)) and (:c\i,VaRaym\i (X)),
respectively, keeping note that we are still preserving the proper order of the coordinates.

Next, we define the Hausdorff distance. This measure, used in Di Bernardino et al. [9] to establish the

consistency of their empirical orthant VaR, is crucial to establishing the consistency of our empirical orthant
TVaR.

Definition 2.6. Consider the ball of radius p centered at a point & denoted by B(zx, p) = {y € R? : §(x,y) < p},
where ¢ is the Euclidean distance. For a set S, the ball of radius p about S is denoted B(S, p) = UgesB(z, p).
Then, for A;, Ao compact sets in the measure space (Ri,é), the Hausdorff distance between these sets is
represented by

dH(Al,AQ) = 1nf{p >0:A4;C B(AQ,[)),AQ C B(Al,p)}

= max{ sup 6(x, As), sup (S(w,Al)}7

TEA; zEA2
where §(x, A1) = min ||z — y|.
yeA,

Since VaR can approach infinity, the Hausdorff distance may be infinite. To curb this issue, we introduce a
truncated version of VaR,, (X), that is

VaR, (X)™ = { (2, VaR,, o (X)) : VaRa(X;) < 25 < T, V) £}, (2.3)

t=1,...,d where {T, }nen iIs an increasing sequence. In essence, the sequence T,, is a method for controlling
the orthant VaR at lower sample sizes, ensuring finite Hausdorff distance and allowing us to use the results
established by Di Bernadino and Lalog [8]. Moreover, since T,, — oo we have

n—oo

VaR, (X)) — VaR,(X).

n—00

Next, we introduce a few expressions that will be of use throughout the paper. For a € (0,1) and r,{ > 0,
consider the ball

E=B({zeRl:|F(z)—a|<r},().
Additionally, consider the infimum of the Euclidean norm of the gradient vector evaluated at x for a twice

differentiable function F, denoted mV = infzep ||(VF)g||. Similarly, define by My = sup,cp ||(HFy)||, the
supremum of the matrix norm, induced by the Euclidean norm, of the Hessian matrix evaluated at x. Finally, we
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set {F=a}={xcR%:F(x)=a}and {F =a}” ={xc[0,T]?: F(x) = a}, which is used in the following
assumption.

Assumption H. There exists v > 0 and A > 0, such that if |ay — as| < 7, then for all T > 0 such that
{F=a;}" #0and {F =a}" #0,

dg({F = o1} {F = a}") < Aloy — aa|.

For details on the conditions, see Cuevas et al. [7]. This assumption removes the possibility of horizontal
asymptotes in F. With some extra conditions on F', the constant A can be specified. Note that this is a
multivariate extension of Proposition 2.1 from [9], which can be found in [8].

Proposition 2.7. Let ay € (0,1) and F twice differentiable on Rf_. Assume there exists r > 0 and ¢ > 0 such
that mV > 0 and My < co. Then F satisfies Assumption H, with A = —%.

m

To end the section, we introduce the truncated L>° norm which will be of use in the remaining sections. For
two functions f and g,

If =gl = sup |f(z)—g(=),
ze[0,T]4

for some T € RT.

2.1. Lower orthant tail value-at-risk

We present multivariate lower and upper orthant TVaR, introduced by Cossette et al. [5]. These measures
provide a natural extension to the univariate TVaR. They are easy to calculate and are represented by curves,
which provides flexibility in applications. We define the multivariate lower and upper orthant TVaR below.

Definition 2.8. For a random vector X = (X1, ..., X) with joint cdf F, the lower orthant TVaR of X at level
a € (0,1) is defined by

d
TVaR, (X) = {(xh...,:ri,l,TVaRa@\i (X), Zig1,- - 7q) 1 7; > VaRa(X;), Vj # z}

i=1

where

TVaR, , (X)=E {Xi|X,» > VaR,, . (X), Xy, <@, 2; > VaRa(X;),

QLT QLT

forall j =1,2,....d, i #j.
The following proposition provides an interesting parallel for TVaRa@\i(X) to the univariate TVaR.
Proposition 2.9. For all x; > VaR,(X;), i=1,2,...,d,

1

TVaR X)=—5—F——"7—
7aa$w\i( ) F\z(m\z) —«

F\i(=\s)
/ VaR, 5  (X)du, i=1,2,....d. (2.4)
«

Proof. Refer to [5]. O

In Figure 1, we provide an illustration of the lower orthant VaR and TVaR in relation to their univariate
counterparts.
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X, ~ Wei(2, 15)

105 10 15 120 125 130 135
X; ~Wei(2, 5)

FIGURE 1. z; — TVaR, , (X) and VaR,(X) at a = 0.99 for X; ~ Weibull(2,5) and Xg ~
Weibull(2, 15) linked by a Frank copula with Kendall’s 7 = 0.5.

2.2. Upper orthant tail value-at-risk

Considering the lower orthant TVaR, which uses the joint cdf and looks at the upper tail of a distribution, is
not always appropriate. For instance, when interested in returns on stocks one may be concerned with small or,
in the case of R%, negative values. To this end, it would be beneficial to study the lower tail of a distribution.
In this case one considers the upper orthant TVaR. For a multivariate sf F', we can define the upper orthant
TVaR as follows.

Definition 2.10. For a random vector X = (X1,..., X4) with multivariate sf F, the upper orthant TVaR of
X at level a € (0,1) is defined by

d
TVaRa(X) = U {(.231, ey Ti1, TVaRa,w\i (X), LTiglye-- ,xd) STy < VaRa(Xj), V] 7é Z} y
i=1
where
TVaRa,., (X) = E [Xi|X; > VaRoe,, (X), Xy > @], 2; < VaRa(X;),
forall j =1,...,d,1#j.
Similarly to TVaR,, ;. (X), we can reformulate the upper orthant TVaR in terms of VaRq,e,,(X).

Proposition 2.11. For all x; < VaR.(X;), i=1,...,d,

_ 1 T
TVaR, e, (X) = - / VaR,, o, (X)du, i=1,....d. (2.5)

—

Proof. Refer to [5]. O

In Figure 2, we provide an example of the upper orthant VaR and TVaR in relation to their univariate
counterparts.
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X, ~ Wei(2, 15)

29 | — TR
- VaRoss(X)

0 o VaRo,00(X)

= TVaRpes(X2)
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Xy~ Wei(2, 5)

FIGURE 2. 21 — TVaR, 4, (X) and VaR,(X) at a = 0.99 for X; ~ Weibull(2,5) and X, ~
Weibull(2, 15) linked by a Frank copula with Kendall’s 7 = 0.5

3. ESTIMATION OF THE MULTIVARIATE ORTHANT TVAR

With the formulation of Propositions 2.9 and 2.11, we introduce our estimators, beginning with the lower
orthant TVaR.

3.1. Lower orthant TVaR

Definition 3.1. Consider a series of observations X = (Xy,...,Xy) with X; = (714,...,2,;) and X\; =
Xy, X1, Xig1,...,Xg), @ = 1,...,d. Denote F,, and F, \;, the empirical cdf’s (ecdf) for X and X\;,
i=1,...,d, respectively. We define the estimator for the lower orthant TVaR for fixed ®\;, i = 1,...,d, by

1 n,\ (m\i)
TVaR” VaR? d 3.1
TVaRG o (X) = e [ vay, (X (31)
m n
Z VaRy o, X) -8
j=1 ,\z m\l)
for m € N large enough. Setting s = W and u; = a+j-s, (3.1) simplifies to

™ VaRy .. (X)
TVaRp , (X) =) —22 —

04:1:\ m

=1

where VaRy, oy (X) = inf {z; € R} : Foa (7)) > u} is the empirical lower orthant VaR for a given x\; and
Frow, iz Fu(z).

3.2. Upper orthant TVaR

When considering the multivariate sf, we have the estimator for TVaR,, 4, (X).

Definition 3.2. Consider a series of observations X = (Xy,...,Xy) with X; = (214,...,2,) and X\; =
(X, X1, X415 .-, Xa), @ = 1,...,d. Denote F,, and F,\;, the empirical sf’s (esf) for X and X,;,
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i=1,...,d, respectively. We define the estimator for the lower orthant TVaR for fixed @\;, : = 1,...,d, by

TVaR, ., (X) = ﬁ VR, (X)au (3.2)
e VaR,,, .. (X) s
B = 1-a ’
1—a

for m € N large enough. Setting s = ~-% and u; = o+ j - s (3.2) simplifies to

" m VaR, . (X
TVaR (X) = E &H’
m

n
u
a,z\,ﬂ,

Jj=1

where VaRZ’m\i(X) =inf {z; € Ry : Fn’w\z(xi) < 1 —u} is the empirical upper orthant VaR for a given x; and

F’n,w\i cxy — By (x).

3.3. Consistency

When working with estimators, the property of consistency is crucial. With enough data, a consistent esti-
mator allows one to accurately estimate the value of interest without specification, and the possibility of
mispecification, of a statistical model. We focus on the estimator of the lower orthant TVaR. To show that
(3.1) is in fact a consistent estimator for (2.9), we use the dominated convergence theorem. Our first step will
be to establish the pointwise convergence of the function VaRy, , (X) to VaR, , (X). To do so, we begin by
establishing the consistency in Hausdorff distance of the empirical multivariate lower orthant VaR, represented
by

VaR?(X) = 0{z € RY : F,,(z) > a},

as seen in Cuevas et al. [7]. Due to the restriction of compactness from the Hausdorff distance, we establish a
truncated version of VaR[ (X) which is analogous to (2.3), introduced in Di Bernardino et al. [9], defined by

VaR%(X)™ =9 {xz € [0.T,]" : Fp(z) > a}

|
ot

{(x\hmn (X)) VAR (X;) <@ < Ty Vj # z}

QLT

i=1

The following theorem establishes the consistency in Hausdorff distance. This is an extension of the proof for
the bivariate case provided in Di Bernardino et al. [9] to R?, which was originally described in Cuevas et al. [7].

Theorem 3.3. Let oy € (0,1). Let F be twice differentiable on RY. Assume there exists r >0, ¢ > 0 such that

mY >0 and My < oo. Let Ty > 0 such that for all g with |as — aq| <7, VaR,,, (X)Tr £ 0. Let (Ty)nen be an

increasing sequence of positive values. Assume that, for each n, F, is continuous with probability one and that
|F'— Fplleoc — 0 with probability one (wpl).

Then,

dp(VaR,, (X)™, VaRy, (X)) = O(|F — Ful), wpl.
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We note that the quality of the estimator VaR (X) is linked to the choice of F},. This will be discussed further
in Section 4. Using Theorem 3.3, we establish the pointwise convergence of VaRg 5,  (X) to VaR,, ,  (X).

Corollary 3.4. Under the assumptions of Theorem 3.3, and the representation of VaR,,(X) given by (2.1), we
have that

VaR" . (X) “2% VaR

— T\ n—o00

a :D\L'(X)7

pointwise for all x\;.
Before proving Corollary 3.4, we provide the following definition and lemma:

Definition 3.5. For M, a compact metric space, we denote the convergence of sets A, A, € M as A, ~ A in
the power set of M, denoted 2M | if for every ¢ > 0, we have that A, C B(A,¢) and A C B(A,,¢), for all large
enough n.

Lemma 3.6. If sets A and A,, satisfy A, ~~ A, then if x € A, there exists x,, € A, with x, — x.

Proof. Take z € A and let z,, € A,, denote the point minimizing the distance from z to A,,. Since A C B(A4,,¢),
for all large enough n, we conclude that 6(z,z,) = §(z, A,,) is eventually smaller than e, for all € > 0, so
0(x,xn) — 0. O

Now we may prove Corollary 3.4.

Proof. 1t should be clear from Theorem 3.3, that for

Ay = {(w\uVaRa 2, (X ))} and A, = {(m\,,VaRa 2 (X ))}

;> VaRo(X;), j #4 and i = 1,...,d, one has A ~» AT for all T € R large enough. Now, take a point
(w\i,VaRa’m\ (X )) € A;. Next, choose T* € R such that <9:\Z,VaRa 2, (X )) € AT". By Lemma 3.6, there exists

a corresponding point in Ai,n which converges to (:L'\i, VaRa’m\i(X)) From the assumptions of Theorem 3.3,

we have that each @\; corresponds to a unique value of VaR, ,  (X) and VaRg , (X). Thus, we know this

—_—y, GD\
point will be (w\Z,VaRa o, (X )) € A?:L Finally, we have that (ac\l,VaRa -~ (X )) wpl (sc\l,VaRa - (X ))
and therefore
n wpl
Va‘Ra ST ( ) njc:c VaRa m\7( )7
pointwise, as required. O

Now, we prove the consistency of TVaRZ@\i (X). This result is important because it allows risk managers in
industry to assess the risks associated to their assets and liabilities without the risk of mispecification of the
underlying model and with a negligible loss in accuracy.

Theorem 3.7. Under the assumptions of Theorem 3.3 and a consistent estimator F, \; for F\;, we have that
TVaR? . (X) is strongly consistent for TVaR, (X), that is

O, ;

a,w\i

TVaR!, (X) “% TVaR,, (X).

n—oo
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Proof. We will use the dominated convergence theorem. In particular we aim to show

lim TVaR . (X) =

n—oo B\

lim hn,a,w\i (u)du = TVaR,, @\ (X)
n—oo 9 7
where

h (u) _ mz,w\i (X)]l[a,Fn,\i(m\i)] (u)
TP\ B Fn,\i(m\i) —«

By Corollary 3.4 we have that

VaR" _ (X) “2% VaR . (X),
u,:c\l

n—o00 Ui

pointwise, V u € (0,1). Next, by hypothesis, one has that

wpl

Foni — R,

and so

1’ u € [a7Fn, i(m z)]
]I[Fn,\i(m\i)’a] (u) :{ A

0, otherwise

wpl [ 1, w€ o, Fy(ay)]
0, otherwise

=L (@).0) (0)-
Therefore,

P, () wpl m“’C‘z\i<X)]I[Q’F\i(ﬂ:\i)](“)7
s LN\ n—oo F\Z(m\l) — o

pointwise. Next, consider the function

VaR,, o (X) 1o, 7 (@ i)+ (1)
U, T\ 4 s\ (PN
o () = R TSR (D )
g ,m\z(“> Ri(my;) — o, Fi (@) + j(u)

for some b,e > 0 and u € (0,1). It can be seen that hy ae,(4) < gaw, (), for all u € (0,1) and for n large
enough, and that g, . is integrable. Finally, by the dominated convergence theorem

Mﬁ,m\i (X)]]'[a7Fn,\i(z\i)] (u)
Foni(Ty) —

(YR, o (X)L R (@] (1)

B / Ri(z\;) —

lim TVaR} ., (X) = lim

du

1 F\i(=\;) q
e — VaR X

F\7(:13\Z) _a/a Yah u,m\i( ) u
= TVaRa,w\i(X),
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— TVaRow(X)
PR — VaRoo(X)
P o VaRogo(X)
| -~ TVaRgg9(X;)

- TVaR"ee(X)
- VaR"(X)
-- 95%Cl

X2~ Wei(2, 15)

X; ~ Wei(2, 5)

FIGURE 3. Simulation study for TVaR,, 45(X)

establishing the consistency of the empirical TVaR. O

4. EXAMPLES

In this section, examples demonstrating the estimators’ performances are presented. The first example
presents confidence intervals for the lower orthant estimator, as well as a comparison between the empirical
copula and a smoothed version. The second example presents a simulation study of the estimator for the upper
orthant TVaR. Finally, we provide comparisons to the vector-valued CTE developed in Di Bernardino et al. [9]
for both simulated data and the lossALAE data set.

It should be noted that the calculations presented below were completed using R statistical software. While
this choice makes sense from an ease of implementation standpoint, as many of the functions required are already
built in, the software is notorious for being drastically slower than other languages.

4.1. Simulation-lower orthant

We begin with a study of TVaR! (X). A simulation study was run to estimate TVaRy, ¢5(X). In particular, 50
simulations were run each with a sample size of n = 4000 and m = 250 (this choice of m will be kept constant
throughout the remainder of the paper). Marginally, the random variables were Weibull with X; ~ Weibull(2, 5)
and X5 ~ Weibull(2, 15). The dependence was described by a Frank copula with a Kendall’s tau of 7 = 0.5.
The results of the simulations are presented in Figure 3. As can be seen, the differences between VaRg o5(X),
TVaR( ¢5(X) and their theoretical counterparts are mostly negligible.

As previously mentioned, the choice of empirical distribution function is crucial when discussing the con-
sistency of the proposed estimator TVaRy (X). To this end, we ran the simulations presented in Figure 4 to
compare two choices of ecdf. The first choice was the standard empirical copula, C,,, which does not satisfy the
conditions of Theorem 3.3. The second choice was the multilinear extension, C, as described in Neslehova [17],
which does satisfy the conditions of Theorem 3.3. Fifty simulations were run at the o = 0.99 level with sample
sizes n = 1000 and n = 4000, and the distributional settings were identical to those used for Figure 3, described
above. Additionally, note that only TVaR, gq ., (X) was calculated for this comparison.
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FIGURE 4. Comparison of TVaRg g9 ., (X) using C, vs. C;;.

TABLE 1. Comparison of SSE for multilinear and empirical copula.

n = 1000 n = 4000

c, C: C, C
3.483 3.372 2088 2.181

Both sets of simulations show that the fits of the empirical curves are very good, demonstrating the
consistency of the proposed estimators. Moreover, it can be seen the smoothed multilinear empirical cop-
ula provides no noticeable improvement over the standard empirical copula. The sum of squared errors,

SSE =", (TVaRy, ,, (X) —TVaR,, ,, (X))Z, for each simulation in Figure 4 and presented in Table 1, demon-
strate that the differences are again minimal. While the multilinear extension does satisfy the assumptions set
forth in Theorem 3.3, the computational complexity is much higher. Therefore, the remaining analyses were
completed using C,.

4.2. Simulation-upper orthant

Our next simulation study was performed on the upper orthant, with results presented in Figure 5. Here,
sample sizes of n = 100 and 250 were used. The reason behind the large discrepancy of sample sizes when

compared to the study of the lower orthant boils down to the amount of data that is thrown away. When
n

evaluating TVaR, , (X), only 100(1 — a)% of the data is used. In the case of Figure 4, this means 99% of the
data is discarded. However, when computing TVaRZym (X)), 100a% of the data is considered in the calculations

(99% of the data in this simulation).
In Figure 5, one may see that there is a noticeable difference between TVaR, ., (X) and TVaR., , (X),

a,T1
for both sample sizes. The inversion of the empirical survival copula is more demanding than inverting C,,

requiring additional estimation, which could explain the less accurate results. Use of the multilinear extension
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X, ~Wei(2, 15)

— TVaRggsx,(X)
-#- n=100
-4~ =250

T T T T T T

0 2 4 6 8 10
X ~Wei(2, 5)

FIGURE 5. Simulation study for Weibull margins linked by Frank Copula with Kendall’s tau,
7 = 0.5. Fifty simulations of n = 100 and 250 generated data pairs were run.

in the upper orthant could potentially improve fit. However, these calculations would take several weeks with a
high performance processor and as no improvement was seen in the lower orthant, we do not consider this case.

4.3. Capital allocation comparison

As both TVaR,, (X) and TVaR,(X) are infinite collections of points, from a decision making standpoint, a
strategy for establishing the appropriate allocation is necessary. Here, we refer to Mailhot and Mesfioui [15] for
their discussion on capital allocation based on multivariate lower and upper orthant TVaR. In particular, we
focus on VaR and TVaR-based orthogonal projections in the bivariate case. First, the VaR-based projection is

the allocation pair (m}/, TVaR,, ,v (X)) where
Ty

.Z'Y = min { (@

L. (X) — VaRq (X2))® + (21 — VaRa(Xl))2} . (4.1)

L, T
Next, the TVaR-based projection gives the pair (xlT, TVaRa’l"{ (X)) such that

T . o 2 - 2
21 —mz‘}gg(xl){(TVaRa@l(X) TVaRq(X2))” + (21 — VaRa(X1)) } (4.2)

Note that analogous allocations can be done in terms of x5. Here, we compare our empirical estimator for
TVaR,(X) to the consistent estimator of the multivariate lower orthant CTE, CTE(X), as outlined in Di
Bernardino et al. [9]. As both measures are based on the same multivariate VaR and consistency argument,
they are a natural choice for comparison. However, one key difference in these measures is that, as mentioned,
TVaR, (X) is an infinite collection of points whereas CTE,(X) is the same dimension as the random variable
of interest. To this end, we made use of the allocation methods outlined in (4.1) and (4.2) to compare. We
used the same sample as was used in Section 4.1 and the results are presented in Table 2. As can be seen,
the allocation pairs coming from TVaR! (X) are very close to the estimates of CTE, (X). While the allocation
methods used produce very similar results, TVaR , (X) provides an infinite set of possibilities from which to draw
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TABLE 2. Comparison of empirical measures on simulated data.

o (a¥,TVaR,y(X)) («f,TVaR] ¢ (X)) (TVaR},y(X)z}) (TVaR},;(X).af) CTEL(X)

)
0.950 (10.178,30.827) (10.175,27.187) (11.352,27.071) (11.343,27.130) (10.511, 31.275)
0.990 (12.028,36.382) (12.124, 36.302) (13.047,32.982) (13.038,33.093) (12.299, 36.461)
0.995 (12.720,38.500) (12.869, 38.342) (13.610,35.134) (13.678,35.155) (13.207, 38.294)

TABLE 3. Comparison of empirical measures on LossALAE data set.

o (a¥,TVaR? ¢ (X)) (o], TVaR? ¢ (X)) (TVaR ,y (X),2} ) (TVaR? ¢(X),21)  CTEA(X)

)

(210000, 144 899) (373158,81128) (384772.7,72060) (533281.7,132637.7)
)
)

0.950 (210000, 153281
0.990 (500000, 274 223
0.995 (750000,448 858

(500000,274223) (1104683,134743) (1104683,160265) (1043399,254461)
(750000,448858)  (1138139,306072) (1138139,306072) NA

oo —

the allocation pair. This will allow insurers and regulators alike to adjust their allocation needs accordingly,
based on internal objectives or by factoring other outside information, providing a distinct advantage to using
TVaR/ (X) over CTEL (X). Next, the measures were compared using the lossALAE data set in Table 3. Here,
a much larger discrepancy between the TVaR and CTE is observed at each significance level. Additionally,
the choice of allocation method and whether one fixes 1 or x5 is very significant. The empirical CTE is often
noticeably larger than the TVaR across the board. However, it is noted that at the 99.5% level, CTE{ ¢95(X)
does not exist, as the 99.5% empirical level set, L{ o95, is empty. Such problems do not occur with TVaR{ 995 (X).

5. CONCLUSION

In this paper, the estimation of dependent tail risks in dimension d > 2 is addressed. In particular, a strongly
consistent estimator to the orthant-based TVaR for d-dimensional dependent random vectors is developed.
Through simulation studies, it is shown that the methods presented here allow for accurate evaluation of tail
risks without having to assume a statistical model, removing the risk of mispecification. Additionally, this
method does not require the aggregation of risks. While evaluating the risks of random sums can still preserve
the underlying dependence of the individual random variables, it can result in the underlying risks compensating
for each other, which may not be apt in today’s more conservative economic landscape. The ability to estimate
individual values for these risks, while maintaining the dependence between them can allow for more flexibility. In
particular, this added flexibility can prove beneficial for operational risk management, where individual financial
institutions can have vastly different makeups and goals, such as reducing operational loss or exposure to future
risks. While at higher dimensions the curse of dimensionality is certainly present, methods of projection-based
capital allocation, particularly those involving VaR-based projections, can be used to curb these computational
issues and provide comparable results to measures seen in the literature. Incorporating the techniques of Bardou
et al. [2] might also prove beneficial as they could speed up computation time and lay the ground work for a
CLT type result.
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