Free Access
Issue |
ESAIM: PS
Volume 20, 2016
|
|
---|---|---|
Page(s) | 95 - 130 | |
DOI | https://doi.org/10.1051/ps/2016005 | |
Published online | 14 July 2016 |
- L.D. Brown and R. Purves, Measurable selections of extrema. Ann. Statist. 1 (1973) 902–912. [CrossRef] [MathSciNet] [Google Scholar]
- G. Claeskens, M. Hubert, L. Slaets and K. Vakili, Multivariate functional halfspace depth. J. Amer. Statist. Assoc. 109 (2014) 411–423. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Cuesta-Albertos and A. Nieto-Reyes, The random Tukey depth. Comput. Statist. Data Anal. 52 (2008) 4979–4988. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cuevas and R. Fraiman, On depth measures and dual statistics. A methodology for dealing with general data. J. Multivariate Anal. 100 (2009) 753–766. [CrossRef] [MathSciNet] [Google Scholar]
- A. DasGupta, Probability for statistics and machine learning: Fundamentals and advanced topics. Springer Texts in Statistics. Springer, New York (2011). [Google Scholar]
- V.H. de la Peña and E. Giné, Decoupling. From dependence to independence. Probability and its Applications. Springer-Verlag, New York (1999). [Google Scholar]
- D.L. Donoho and M. Gasko, Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 (1992) 1803–1827. [CrossRef] [MathSciNet] [Google Scholar]
- R.M. Dudley, Uniform central limit theorems. Vol. 63 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). [Google Scholar]
- R.M. Dudley, Real analysis and probability. Vol. 74 of Cambridge Studies in Advanced Mathematics. Revised reprint of the 1989 original. Cambridge University Press, Cambridge (2002). [Google Scholar]
- R.M. Dudley, E. Giné and J. Zinn, Uniform and universal Glivenko-Cantelli classes. J. Theoret. Probab. 4 (1991) 485–510. [CrossRef] [MathSciNet] [Google Scholar]
- L. Dümbgen, Limit theorems for the simplicial depth. Statist. Probab. Lett. 14 (1992) 119–128. [CrossRef] [MathSciNet] [Google Scholar]
- S. Dutta, A.K. Ghosh and P. Chaudhuri, Some intriguing properties of Tukey’s half-space depth. Bernoulli 17 (2011) 1420–1434. [CrossRef] [MathSciNet] [Google Scholar]
- R. Fraiman and J. Meloche, Multivariate L-estimation. With comments and a rejoinder by the authors. Test 8 (1999) 255–317. [CrossRef] [MathSciNet] [Google Scholar]
- R. Fraiman and G. Muniz, Trimmed means for functional data. Test 10 (2001) 419–440. [CrossRef] [MathSciNet] [Google Scholar]
- I. Gijbels and S. Nagy, Consistency of non-integrated depths for functional data. J. Multivariate Anal. 140 (2015) 259–282. [CrossRef] [MathSciNet] [Google Scholar]
- F.R. Hampel, A general qualitative definition of robustness. Ann. Math. Statist. 42 (1971) 1887–1896. [CrossRef] [MathSciNet] [Google Scholar]
- X. He and G. Wang, Convergence of depth contours for multivariate datasets. Ann. Statist. 25 (1997) 495–504. [CrossRef] [MathSciNet] [Google Scholar]
- L. Kong and Y. Zuo, Smooth depth contours characterize the underlying distribution. J. Multivariate Anal. 101 (2010) 2222–2226. [CrossRef] [MathSciNet] [Google Scholar]
- J. Kuelbs and J. Zinn, Concerns with functional depth. ALEA Latin Am. J. Prob. Math. Statist. 10 (2013) 831–855. [Google Scholar]
- E.H. Lieb and M. Loss, Analysis. Vol. 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. 2nd edition (2001). [Google Scholar]
- R.Y. Liu, On a notion of data depth based on random simplices. Ann. Statist. 18 (1990) 405–414. [CrossRef] [MathSciNet] [Google Scholar]
- R.Y. Liu, J.M. Parelius and K. Singh, Multivariate analysis by data depth: descriptive statistics, graphics and inference. With discussion and a rejoinder by Liu and Singh. Ann. Statist. 27 (1999) 783–858. [CrossRef] [MathSciNet] [Google Scholar]
- S. López-Pintado and J. Romo, On the concept of depth for functional data. J. Amer. Statist. Assoc. 104 (2009) 718–734. [Google Scholar]
- S. López-Pintado and J. Romo, A half-region depth for functional data. Comput. Statist. Data Anal. 55 (2011) 1679–1695. [CrossRef] [MathSciNet] [Google Scholar]
- S. López-Pintado, Y. Sun, J. Lin and M.G. Genton, Simplicial band depth for multivariate functional data. Adv. Data Anal. Classif. 8 (2014) 321–338. [CrossRef] [MathSciNet] [Google Scholar]
- J.-C. Massé and R. Theodorescu, Halfplane trimming for bivariate distributions. J. Multivariate Anal. 48 (1994) 188–202. [CrossRef] [MathSciNet] [Google Scholar]
- I. Mizera, Qualitative robustness and weak continuity: the extreme unction? In Nonparametrics and robustness in modern statistical inference and time series analysis: a Festschrift in honor of Professor Jana Jurečková. Vol. 7 of Inst. Math. Stat. Collect. Inst. Math. Statist., Beachwood, OH (2010) 169–181. [Google Scholar]
- I. Mizera and M. Volauf, Continuity of halfspace depth contours and maximum depth estimators: diagnostics of depth-related methods. J. Multivariate Anal. 83 (2002) 365–388. [CrossRef] [MathSciNet] [Google Scholar]
- K. Mosler, Multivariate dispersion, central regions and depth: The lift zonoid approach. Vol. 165 of Lect. Notes Stat. Springer-Verlag, Berlin (2002). [Google Scholar]
- K. Mosler, Depth statistics. Robustness and complex data structures. Springer, Heidelberg (2013) 17–34. [Google Scholar]
- K. Mosler and Y. Polyakova, General notions of depth for functional data. arXiv:1208.1981 (2012). [Google Scholar]
- S. Nagy, Coordinatewise characteristics of functional data. In Proc. 31th Int. Conf. Mathematical Methods in Economics 2013, Jihlava, Czech Republic, edited by H. Vojcáˇková. (Part II). College of Polytechnics Jihlava, September (2013) 655–660. [Google Scholar]
- J.O. Ramsay and B.W. Silverman, Functional data analysis. Springer Series in Statistics, 2nd edition. Springer, New York (2005). [Google Scholar]
- A.W. Roberts and D.E. Varberg, Convex functions. Vol. 57 of Pure and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1973). [Google Scholar]
- R. Serfling, Depth functions in nonparametric multivariate inference. In Data depth: robust multivariate analysis, computational geometry and applications. Vol. 72 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci. Amer. Math. Soc., Providence, RI (2006) 1–16. [Google Scholar]
- R. Serfling, Multivariate symmetry and asymmetry. Vol. 8 of Encyclopedia of Statistical Sciences, 2nd edition (2006) 5338–5345. [Google Scholar]
- J.W. Tukey, Mathematics and the picturing of data. In Proc. of the International Congress of Mathematicians (Vancouver, B. C., 1974). Vol. 2, Canad. Math. Congress, Montreal, Que. (1975) 523–531. [Google Scholar]
- A.W. van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York (1996). [Google Scholar]
- Y. Zuo and R. Serfling, General notions of statistical depth function. Ann. Statist. 28 (2000) 461–482. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Zuo and R. Serfling, On the performance of some robust nonparametric location measures relative to a general notion of multivariate symmetry. J. Statist. Plann. Inference 84 (2000) 55–79. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.