Free Access
Volume 20, 2016
Page(s) 66 - 94
Published online 14 July 2016
  1. G. Adimari, Empirical likelihood type confidence intervals under random censorship. Ann. Inst. Statist. Math. 49 (1997) 447–466. [CrossRef] [MathSciNet] [Google Scholar]
  2. P.K. Andersen, Ø. Borgan, R.D. Gill and N. Keiding, Statistical models based on counting processes. Springer Ser. Stat. Springer-Verlag, New York (1993). [Google Scholar]
  3. Y. Bilias, M. Gu and Zh. Ying, Towards a general asymptotic theory for Cox model with staggered entry. Ann. Statist. 25 (1997) 662–682. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Cai and D.E. Schaubel, Analysis of recurrent event data. In Advances in survival analysis, Vol. 23 of Handbook of Statist. Elsevier, Amsterdam (2004) 603–623. [Google Scholar]
  5. J. Cai and D.E. Schaubel, Marginal means/rates models for multiple type recurrent event data. Lifetime Data Anal. 10 (2004) 121–138. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. B.E. Chen and R.J. Cook, Tests for multivariate recurrent events in the presence of a terminal event. Biostatistics 5 (2004) 237–251. [Google Scholar]
  7. B.E. Chen, R.J. Cook, J.F. Lawless and M. Zhan, Statistical methods for multivariate interval-censored recurrent events. Stat. Med. 24 (2005) 671–691. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. J. Chen, L. Peng and Y. Zhao, Empirical likelihood based confidence intervals for copulas. J. Multivariate Anal. 100 (2009) 137–151 [CrossRef] [MathSciNet] [Google Scholar]
  9. S.X. Chen and I. Van Keilegom, A review on empirical likelihood methods for regression. TEST 18 (2009) 415–447. [CrossRef] [MathSciNet] [Google Scholar]
  10. S.X. Chen, L. Peng and Y. Qin, Effects of data dimension on empirical likelihood. Biometrika 96 (2009) 711–722. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.J. Cook and J.F. Lawless, Marginal analysis of recurrent events and a terminating event. Stat. Med. 16 (1997) 911–924. [CrossRef] [PubMed] [Google Scholar]
  12. R.J. Cook and J.F. Lawless, The Statistical Analysis of Recurrent Events. Statistics for Biology and Health. Springer-Verlag (2007). [Google Scholar]
  13. R.J. Cook, J.F. Lawless and C. Nadeau, Robust tests for treatment comparisons based on recurrent event responses. Biometrics 52 (1996) 557–571. [CrossRef] [PubMed] [Google Scholar]
  14. R.J. Cook, J.F. Lawless, L. Lakhal-Chaieb and K. Lee, Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. J. Amer. Statist. Assoc. 104 (2009) 60–75. [CrossRef] [MathSciNet] [Google Scholar]
  15. J-Y. Dauxois and S. Sencey, Non-parametric tests for recurrent events under competing risks. Scand. J. Stat. 36 (2009) 649–670. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Devroye and G. Lugosi, Combinatorial methods in density estimation. Springer, New York (2001). [Google Scholar]
  17. P. Du, Nonparametric modeling of the gap time in recurrent event data. Lifetime Data Anal. 15 (2009) 256–277. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. D. Ghosh, Accelerated rates regression models for recurrent failure time data. Lifetime Data Anal. 10 (2004) 247–261. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. D. Ghosh and D.Y. Lin, Nonparametric analysis of recurrent events and death. Biometrics 56 (2000) 554–562. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. D. Ghosh and D.Y. Lin, Marginal regression models for recurrent and terminal events. Statist. Sinica 12 (2002) 663–688. [MathSciNet] [Google Scholar]
  21. D. Ghosh and D.Y. Lin, Semiparametric analysis of recurrent events data in the presence of dependent censoring. Biometrics 59 (2003) 877–885. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. D.J. Hand, The statistical analysis of recurrent events by Richard R. Cook, Jerald F. Lawless. Int. Stat. Rev. 76 (2008) 142–143. [Google Scholar]
  23. N.L. Hjort, I.W. McKeague and I. Van Keilegom, Extending the scope of empirical likelihood. Ann. Statist. 37 (2009) 1079–1111. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Jing, J. Yuan and W. Zhou, Jackknife empirical likelihood. J. Amer. Statist. Assoc. 104 (2009) 1224–1232. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Keziou and S. Leoni-Aubin, On empirical likelihood for semiparametric two-sample density ratio models. J. Statist. Plann. Inference 138 (2008) 915–928. [CrossRef] [MathSciNet] [Google Scholar]
  26. J.F. Lawless, The analysis of recurrent events for multiple subjects. J. Roy. Statist. Soc. Ser. C 44 (1995) 487–498. [Google Scholar]
  27. J.F. Lawless and C. Nadeau, Some simple robust methods for the analysis of recurrent events. Technometrics 37 (1995) 158–168. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. Li, R. Li and M. Zhou, Empirical likelihood in survival analysis. In Contemporary multivariate analysis and design of experiments. Vol. 2 of Ser. Biostat. World Sci. Publ., Hackensack, NJ (2005) 337–349. [Google Scholar]
  29. D.Y. Lin and Z. Ying, Nonparametric tests for the gap time distributions of serial events based on censored data. Biometrics 57 (2001) 369–375. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. D.Y. Lin, L.J. Wei and Zhiliang Ying. Accelerated failure time models for counting processes. Biometrika 85 (1998) 605–618. [CrossRef] [MathSciNet] [Google Scholar]
  31. D.Y. Lin, W. Sun and Z. Ying, Nonparametric estimation of the gap time distributions for serial events with censored data. Biometrika 86 (1999) 59–70. [CrossRef] [MathSciNet] [Google Scholar]
  32. D.Y. Lin, L.J. Wei, I. Yang and Z. Ying, Semiparametric regression for the mean and rate functions of recurrent events. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 (2000) 711–730. [CrossRef] [MathSciNet] [Google Scholar]
  33. M. Miloslavsky, S. Keleş, M.J. van der Laan and S. Butler. Recurrent events analysis in the presence of time-dependent covariates and dependent censoring. J. R. Stat. Soc. Ser. B 66 (2004) 239–257. [CrossRef] [MathSciNet] [Google Scholar]
  34. A.B. Owen, Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 (1988) 237–249. [CrossRef] [MathSciNet] [Google Scholar]
  35. A.B. Owen, Empirical likelihood for linear models. Ann. Statist. 19 (1991) 1725–1747. [CrossRef] [MathSciNet] [Google Scholar]
  36. A.B. Owen, Empirical likelihood ratio confidence regions. Ann. Statist. 18 (1990) 90–120. [CrossRef] [MathSciNet] [Google Scholar]
  37. A.B. Owen, Empirical Likelihood. Monographs on Statistics and Applied Probability. Taylor & Francis (2001). [Google Scholar]
  38. A. Pakes and D. Pollard, Simulation and the asymptotics of optimization estimators. Econometrica 57 (1989) 1027–1057. [CrossRef] [MathSciNet] [Google Scholar]
  39. D. Pollard, Empirical processes: theory and applications. Vol. 2 of NSF-CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA (1990). [Google Scholar]
  40. J. Ren, Weighted empirical likelihood ratio confidence intervals for the mean with censored data. Ann. Inst. Statist. Math. 53 (2001) 498–516. [CrossRef] [MathSciNet] [Google Scholar]
  41. J. Ren, Smoothed weighted empirical likelihood ratio confidence intervals for quantiles. Bernoulli 14 (2008) 725–748. [CrossRef] [MathSciNet] [Google Scholar]
  42. J. Ren, Weighted empirical likelihood in some two-sample semiparametric models with various types of censored data. Ann. Statist. 36 (2008) 147–166. [CrossRef] [MathSciNet] [Google Scholar]
  43. D.R. Thomas and G.L. Grunkemeier, Confidence interval estimation of survival probabilities for censored data. J. Amer. Statist. Assoc. 70 (1975) 865–871. [CrossRef] [MathSciNet] [Google Scholar]
  44. A.W. Van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer (1996). [Google Scholar]
  45. D. Varron, Empirical likelihood confidence bands for functional parameters in plug-in estimation. Preprint (2014). [Google Scholar]
  46. Q. Wang and B. Jing, Empirical likelihood for a class of functionals of survival distribution with censored data. Ann. Inst. Statist. Math. 53 (2001) 517–527. [CrossRef] [MathSciNet] [Google Scholar]
  47. W. Wang and M.T. Wells, Nonparametric estimation of successive duration times under dependent censoring. Biometrika 85 (1998) 561–572. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.