Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 60 - 80
DOI https://doi.org/10.1051/ps/2014013
Published online 17 June 2015
  1. C. Andrieu, G. Fort and M. Vihola, Quantitative Convergence Rates for sub-geometric Markov chains. Technical report arXiv:1309.0622v2 (2014). [Google Scholar]
  2. C. Andrieu, E. Moulines and P. Priouret, Stability of Stochastic Approximation under Verifiable Conditions. SIAM J. Control Optim. 44 (2005) 283–312. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Benaim, Dynamics of stochastic approximation algorithms. In Séminaire de Probabilités, XXXIII, vol. 1709 of Lect. Notes Math. Springer, Berlin (1999) 1–68. [Google Scholar]
  4. A. Benveniste, M. Metivier and P. Priouret, Adaptive Algorithms and Stochastic Approximations. Springer Verlag (1987). [Google Scholar]
  5. P. Bianchi, G. Fort and W. Hachem, Performance of a Distributed Stochastic Approximation Algorithm. IEEE Trans. Inform. Theory 59 (2013) 391–405. [CrossRef] [Google Scholar]
  6. V.S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press (2008). [Google Scholar]
  7. C. Bouton, Approximation gaussienne d’algorithmes stochastiques à dynamique markovienne. Ann. Inst. Henri Poincaré 24 (1988) 131–155. [Google Scholar]
  8. R. Buche and H.J. Kushner, Rate of Convergence for Constrained Stochastic Approximation Algorithms. SIAM J. Control Optim. 40 (2001) 1011–1041. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Chen, Stochastic Approximation and its Applications. Kluwer Academic Publishers (2002). [Google Scholar]
  10. H.F. Chen, L. Guo and A.J. Gao, Convergence and robustness of the Robbins−Monro algorithms truncated at randomly varying bounds. Stoch. Proc. Appl. (1988). [Google Scholar]
  11. B. Delyon, Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory. Technical report. Publication interne 952, IRISA (2000). [Google Scholar]
  12. B. Delyon, M. Lavielle and E. Moulines, Convergence of a Stochastic Approximation Version of the EM Algorithm. Ann. Statist. 27 (1999) 94–128. [Google Scholar]
  13. M. Duflo, Algorithmes stochastiques. Springer (1996). [Google Scholar]
  14. V. Fabian, On asymptotically efficient recursive estimation. Ann. Statist. 6 (1978) 854–866. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz, Convergence of the Wang-Landau algorithm. Technical report. LTCI and CERMICS (2013). Submitted in Math. Comput. (2014). [Google Scholar]
  16. G. Fort, E. Moulines and P. Priouret, Convergence of Adaptive and Interacting Markov Chain Monte Carlo Algorithms. Ann. Statist. 39 (2012) 3262–3289. [CrossRef] [Google Scholar]
  17. P. Hall and C.C. Heyde, Martingale Limit Theory and its Application. Academic Press, New York, London (1980). [Google Scholar]
  18. O. Hernandez−Lerma and J.B. Lasserre, Markov Chains and Invariant Probabilities. Birkhäuser (2003). [Google Scholar]
  19. R.A. Horn and C.R. Johnson, Topics in matrix analysis. Cambridge University Press (1994). [Google Scholar]
  20. H. Kushner, Stochastic approximation: a survey. Wiley Interdisciplinary Reviews: Comput. Statist. 2 (2010) 87–96. [CrossRef] [Google Scholar]
  21. H. Kushner and H. Huang, Rates of convergence for Stochastic Approximation type algorithms. SIAM J. Control Optim. 17 (1979) 607–617. [CrossRef] [MathSciNet] [Google Scholar]
  22. H.J. Kushner and G.G. Yin, Stochastic Approximation and Recursive Algorithms and Applications. Springer (2003). [Google Scholar]
  23. J. Lelong, Asymptotic normality of randomly truncated stochastic algorithms. ESAIM: PS 17 (2013) 105–119. [CrossRef] [EDP Sciences] [Google Scholar]
  24. S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. Cambridge University Press (2009). [Google Scholar]
  25. M. Pelletier, Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing. Ann. Appl. Probab. 8 (1998) 10–44. [CrossRef] [MathSciNet] [Google Scholar]
  26. B.T. Polyak and A.B. Juditsky, Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30 (1992) 838–855. [Google Scholar]
  27. D. Ruppert, Handbook of Sequential Analysis, chapter Stochastic Approximation. Marcel Decker (1991). [Google Scholar]
  28. J.C. Spall, Introduction to Stochastic Search and Optimization. Wiley-Interscience (2003). [Google Scholar]
  29. Y. Zhu, Asymptotic Normality for a Vector Stochastic Difference Equation with Applications in Stochastic Approximation. J. Multivariate Anal. 57 (1996) 101–118. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.