Free Access
Volume 18, 2014
Page(s) 854 - 880
Published online 29 October 2014
  1. I. Bárány, Sylvester’s question: The probability that n points are in convex position. Ann. Probab. 27 (1999) 2020–2034. [CrossRef] [Google Scholar]
  2. I. Bárány, Random polytopes, convex bodies and approximation, in Stochastic Geometry, Vol. 1892 of Lect. Notes Math. Springer Berlin/Heidelberg (2007) 77–118. [Google Scholar]
  3. I. Bárány and A.M. Vershik, On the number of convex lattice polytopes. Geom. Func. Anal. 2 (1992) 381–393. [CrossRef] [Google Scholar]
  4. P. Billingsley, Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edition. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York (1999). [Google Scholar]
  5. O. Bodini, Ph. Duchon, A. Jacquot and L. Mutafchiev, Asymptotic analysis and random sampling of digitally convex polyominoes. In Proc. of the 17th IAPR international conference on Discrete Geometry for Computer Imagery, DGCI’13. Springer-Verlag, Berlin, Heidelberg (2013) 95–106. [Google Scholar]
  6. L.V. Bogachev and S.M. Zarbaliev, Universality of the limit shape of convex lattice polygonal lines. Ann. Probab. 39 (1992) 2271–2317. [CrossRef] [Google Scholar]
  7. C. Buchta, On the boundray structure of the convex hull of random points. Adv. Geom. (2012). Available at: [Google Scholar]
  8. H. Busemann, Convex Surfaces. Interscience. New York (1958). [Google Scholar]
  9. P. Calka, Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional poisson-voronoi tessellation and a poisson line process. Adv. Appl. Probab. 35 (2003) 551–562. Available at [CrossRef] [Google Scholar]
  10. R.M. Dudley, Real Analysis and Probability. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2002). [Google Scholar]
  11. W. Feller, An introduction to probability theory and its applications. Vol. II. 2nd edition. John Wiley & Sons Inc., New York (1971). [Google Scholar]
  12. M.A. Hurwitz, Sur le problème des isopérimètres. C. R. Acad. Sci. Paris 132 (1901) 401–403. [Google Scholar]
  13. M.A. Hurwitz, Sur quelques applications géométriques des séries de Fourier. Annales Scientifiques de l’École Normale supérieure, 19 (1902) 357–408. Available at˙1902˙3˙19˙˙357˙0.pdf. [Google Scholar]
  14. B. Klartag, On John-type ellipsoids, in Geometric aspects of functional analysis, vol. 1850 of Lect. Notes Math. Springer, Berlin (2004) 149–158. [Google Scholar]
  15. D.E. Knuth, Axioms and hulls. Vol. 606 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (1992). Available at:˜uno/aah.html. [Google Scholar]
  16. P. Lévy, L’addition des variables aléatoires définies sur un circonférence. Bull. Soc. Math. France 67 (1939) 1–41. Available at˙1939˙˙67˙˙1˙0.pdf. [Google Scholar]
  17. J.-F. Marckert, Probability that n random points in a disk are in convex position. Available at (2014). [Google Scholar]
  18. M. Moszyńska, Selected Topics in Convex Geometry. Birkhäuser (2006). [Google Scholar]
  19. V.V. Petrov, Sums of independent random variables. Translated from the Russian by A.A. Brown. Band 82, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York (1975). [Google Scholar]
  20. A.V. Pogorelov, Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I. (1973). Translated from the Russian by Israel Program for Scientific Translations, in vol. 35 Translations of Mathematical Monographs. [Google Scholar]
  21. G. Pólya, Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Stud. Kraus (1965). [Google Scholar]
  22. W. Rudin, Real and Complex Analysis, 3rd edn. McGraw-Hill International Editions (1987). [Google Scholar]
  23. R. Schneider, Convex Bodies: The Brunn−Minkowski Theory. Cambridge University Press (1993). [Google Scholar]
  24. Ya.G. Sinai, Probabilistic approach to the analysis of statistics for convex polygonal lines. Functional Anal. Appl. 28 (1994) 1. [Google Scholar]
  25. J.J. Sylvester, On a special class of questions on the theory of probabilities. Birmingham British Assoc. Rept. (1865) 8–9. [Google Scholar]
  26. G. Szegö, Orthogonal polynomials. Colloquium Publications, 4th edition. American Mathematical Society (1939). [Google Scholar]
  27. P. Valtr, Probability that n random points are in convex position. Discr. Comput. Geom. 13 (1995) 637–643. [CrossRef] [Google Scholar]
  28. P. Valtr, The probability that n random points in a triangle are in convex position. Combinatorica 16 (1996) 567–573. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Vershik and O. Zeitouni, large deviations in the geometry of convex lattice polygons. Israel J. Math. 109 (1999) 13–27. [CrossRef] [MathSciNet] [Google Scholar]
  30. R.J.G. Wilms, Fractional parts of random variables. Limit theorems and infinite divisibility, Dissertation. Technische Universiteit Eindhoven, Eindhoven (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.