Free Access
Volume 18, 2014
Page(s) 881 - 899
Published online 29 October 2014
  1. K. Benhenni and S. Cambanis, Sampling designs for estimating integrals of stochastic processes. Ann. Statist. 20 (1992) 161–194. [CrossRef] [MathSciNet] [Google Scholar]
  2. K. Benhenni and M. Rachdi, Nonparametric estimation of the regression function from quantized observations. Comput. Statist. Data Anal. 50 (2006) 3067–3085. [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Benhenni and M. Rachdi, Nonparametric estimation of average growth curve with general nonstationary error process. Comm. Statist. Theory Methods 36 (2007) 1173–1186. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Cambanis, Sampling designs for time series, in Time Series in the Time Domain. Edited by P.R. Krishnaiah E.J. Hannan and M.M. Rao, vol. 5 of Handbook of Statistics. Elsevier (1985) 337–362 [Google Scholar]
  5. H. Cardot, Nonparametric estimation of smoothed principal components analysis of sampled noisy functions. J. Nonparametr. Statist. 12 (2000) 503–538. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Degras, Asymptotics for the nonparametric estimation of the mean function of a random process. Statist. Probab. Lett. 78 (2008) 2976–2980. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Degras, Simultaneous confidence bands for nonparametric regression with functional data. Statist. Sinica 21 (2011) 1735–1765. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Fan and I. Gijbels, Local polynomial modelling and its applications. Vol. 66 of Monogr. Stat. Appl. Probab. Chapman & Hall, London (1996). [Google Scholar]
  9. J. Fan, I. Gijbels, T.C. Hu and L.S. Huang, A study of variable bandwidth selection for local polynomial regression. Statist. Sinica 6 (1996) 113–127. [MathSciNet] [Google Scholar]
  10. J. Fan and J.S. Marron, Fast implementations of nonparametric curve estimators. J. Comput. Graph. Statist. 3 (1994) 35–56. [Google Scholar]
  11. E. Ferreira, V. Núñez–Antón and J. Rodríguez–Póo, Kernel regression estimates of growth curves using nonstationary correlated errors. Statist. Probab. Lett. 34 (1997) 413–423. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Francisco–Fernández, J. Opsomer and J. M. Vilar–Fernández, Plug-in bandwidth selector for local polynomial regression estimator with correlated errors. J. Nonparametr. Stat. 16 (2004) 127–151. [CrossRef] [Google Scholar]
  13. M. Francisco–Fernández and J.M. Vilar–Fernández, Local polynomial regression estimation with correlated errors. Comm. Statist. Theory Methods 30 (2001) 1271–1293. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Hall, S. Nath Lahiri and J. Polzehl, On bandwidth choice in nonparametric regression with both short- and long-range dependent errors. Ann. Statist. 23 (1995) 1921–1936. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.D. Hart and T.E. Wehrly, Kernel regression estimation using repeated measurements data. J. Amer. Statist. Assoc. 81 (1986) 1080–1088. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.D. Hart and T.E. Wehrly, Consistency of cross-validation when the data are curves. Stoch. Process. Appl. 45 (1993) 351–361. [CrossRef] [Google Scholar]
  17. E. Masry, Local polynomial fitting under association. J. Multivariate Anal. 86 (2003) 330–359. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Masry and J. Fan, Local polynomial estimation of regression functions for mixing processes. Scand. J. Statist. 24 (1997) 165–179. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Opsomer, Y. Wang and Y. Yang, Nonparametric regression with correlated errors. Statist. Sci. 16 (2001) 134–153. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Pérez–González, J.M. Vilar–Fernández and W. González–Manteiga, Asymptotic properties of local polynomial regression with missing data and correlated errors. Ann. Inst. Statist. Math. 61 (2009) 85–109. [CrossRef] [MathSciNet] [Google Scholar]
  21. O. Perrin, Quadratic variation for Gaussian processes and application to time deformation. Stoch. Process. Appl. 82 (1999) 293–305. [Google Scholar]
  22. R. Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013). [Google Scholar]
  23. J.O. Ramsay and B.W. Silverman, Functional data analysis. Springer Ser. Statist., 2nd edition. Springer, New York (2005). [Google Scholar]
  24. J.A. Rice and B.W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 (1991) 233–243. [MathSciNet] [Google Scholar]
  25. D. Ruppert, Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation. J. Amer. Statist. Assoc. 92 (1997) 1049–1062. [CrossRef] [MathSciNet] [Google Scholar]
  26. D. Ruppert, S.J. Sheather and M.P. Wand, An effective bandwidth selector for local least squares regression. J. Amer. Statist. Assoc. 90 (1995) 1257–1270. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.P. Wand and M.C. Jones, Kernel smoothing. Vol. 60 of Monogr. Statist. Appl. Probab. Chapman and Hall Ltd., London (1995). [Google Scholar]
  28. F. Yao, Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data. J. Multivariate Anal. 98 (2007) 40–56. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.