Free Access
Issue
ESAIM: PS
Volume 18, 2014
Page(s) 483 - 502
DOI https://doi.org/10.1051/ps/2013046
Published online 10 October 2014
  1. B. Abdous, Computationally efficient classes of higher-order kernel functions. Can. J. Statist. 23 (1995) 21–27. [CrossRef] [Google Scholar]
  2. L. Breiman, Using adaptive bagging to debias regressions. Technical Report 547, Dpt of Statist., UC Berkeley (1999). [Google Scholar]
  3. L. Breiman and J. Friedman, Estimating optimal transformation for multiple regression and correlation. J. Amer. Stat. Assoc. 80 (1995) 580–598. [Google Scholar]
  4. P. Bühlmann and B. Yu, Boosting with the l2 loss: Regression and classification. J. Amer. Stat. Assoc. 98 (2003) 324–339. [CrossRef] [Google Scholar]
  5. P.-A. Cornillon, N. Hengartner and E. Matzner-Løber, Recursive bias estimation and l2 boosting. Technical report, ArXiv:0801.4629 (2008). [Google Scholar]
  6. P.-A. Cornillon, N. Hengartner and Matzner-Løber, ibr: Iterative Bias Reduction. CRAN (2010). http://cran.r-project.org/web/packages/ibr/index.html. [Google Scholar]
  7. P.-A. Cornillon, N. Hengartner, N. Jégou and Matzner-Løber, Iterative bias reduction: a comparative study. Statist. Comput. (2012). [Google Scholar]
  8. P. Craven and G. Wahba, Smoothing noisy data with spline functions. Numer. Math. 31 (1979) 377–403. [Google Scholar]
  9. M. Di Marzio and C. Taylor, On boosting kernel regression. J. Statist. Plan. Infer. 138 (2008) 2483–2498. [CrossRef] [Google Scholar]
  10. R. Eubank, Nonparametric regression and spline smoothing. Dekker, 2nd edition (1999). [Google Scholar]
  11. W. Feller, An introduction to probability and its applications, vol. 2. Wiley (1966). [Google Scholar]
  12. J. Friedman, Multivariate adaptive regression splines. Ann. Statist. 19 (1991) 337–407. [Google Scholar]
  13. J. Friedman, Greedy function approximation: A gradient boosting machine. Ann. Statist. 28 (1189–1232) (2001). [Google Scholar]
  14. J. Friedman and W. Stuetzle, Projection pursuit regression. J. Amer. Statist. Assoc. 76 (817–823) (1981). [Google Scholar]
  15. J. Friedman, T. Hastie and R. Tibshirani, Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 (2000) 337–407. [Google Scholar]
  16. C. Gu, Smoothing spline ANOVA models. Springer (2002). [Google Scholar]
  17. L. Gyorfi, M. Kohler, A. Krzyzak and H. Walk, A Distribution-Free Theory of Nonparametric Regression. Springer Verlag (2002). [Google Scholar]
  18. D. Harrison and D. Rubinfeld, Hedonic prices and the demand for clean air. J. Environ. Econ. Manag. (1978) 81–102. [Google Scholar]
  19. T. Hastie and R. Tibshirani, Generalized Additive Models. Chapman & Hall (1995). [Google Scholar]
  20. R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge (1985). [Google Scholar]
  21. C. Hurvich, G. Simonoff and C.L. Tsai, Smoothing parameter selection in nonparametric regression using and improved akaike information criterion. J. Roy. Stat. Soc. B 60 (1998) 271–294. [Google Scholar]
  22. O. Lepski, Asymptotically minimax adaptive estimation. I: upper bounds. optimally adaptive estimates. Theory Probab. Appl. 37 (1991) 682–697. [Google Scholar]
  23. K.-C. Li, Asymptotic optimality for Cp, CL, cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15 (1987) 958–975. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Ridgeway, Additive logistic regression: a statistical view of boosting: Discussion. Ann. Statist. 28 (2000) 393–400. [Google Scholar]
  25. L. Schwartz, Analyse IV applications à la théorie de la mesure. Hermann (1993). [Google Scholar]
  26. W. Stuetzle and Y. Mittal, Some comments on the asymptotic behavior of robust smoothers, in Smoothing Techniques for Curve Estimation, edited by T. Gasser and M. Rosenblatt. Springer-Verlag (1979) 191–195. [Google Scholar]
  27. J. Tukey, Explanatory Data Analysis. Addison-Wesley (1977). [Google Scholar]
  28. F. Utreras, Convergence rates for multivariate smoothing spline functions. J. Approx. Theory (1988) 1–27. [Google Scholar]
  29. J. Wendelberger, Smoothing Noisy Data with Multivariate Splines and Generalized Cross-Validation. PhD thesis, University of Wisconsin (1982). [Google Scholar]
  30. S. Wood, Thin plate regression splines. J. R. Statist. Soc. B 65 (2003) 95–114. [Google Scholar]
  31. Y. Yang, Combining different procedures for adaptive regression. J. Mult. Analysis 74 (2000) 135–161. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.