Free Access
Issue
ESAIM: PS
Volume 18, 2014
Page(s) 265 - 276
DOI https://doi.org/10.1051/ps/2013035
Published online 25 July 2014
  1. R.R. Bahadur, A note on quantiles in large samples. Ann. Math. Stat. 37 (1966) 577–580. [CrossRef] [Google Scholar]
  2. P.J. Bickel and M. Rosenblatt, On some global measures of the deviation of density function estimates. Ann. Statist. 1 (1973) 1071–1095. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Claeskens and I. Van Keilegom, Bootstrap confidence bands for regression curves and their derivatives. Ann. Statist. 31 (2003) 1852–1884. [CrossRef] [MathSciNet] [Google Scholar]
  4. U. Einmahl and D.M. Mason, Uniform in bandwidth consistency of kernel–type function estimators. Ann. Statist. 3 (2005) 1380–1403. [CrossRef] [Google Scholar]
  5. R.L. Eubanck and P.L. Speckman, Confidence bands in nonparametric regression. J. Amer. Stat. Associat. 88 (1993) 1287–1301. [CrossRef] [Google Scholar]
  6. J. Fan and I. Gijbels, Local Polynomial Modeling And Its Applications. Monogr. Stat. Appl. Prob. Chapman and Hall 66 (1996). [Google Scholar]
  7. E. Guerre and C. Sabbah, Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econom. Theory. 28 (2012) 87–129. [CrossRef] [Google Scholar]
  8. W. Härdle, Asymptotic maximal deviation of M–smoothers. J. Mult. Anal. 29 (1989) 163–179. [CrossRef] [Google Scholar]
  9. W. Härdle, Y. Ritov and S. Song, Partial linear quantile regression and bootstrap confidence bands. J. Mult. Ana. 107 (2012) 244–262. [CrossRef] [Google Scholar]
  10. W. Härdle and S. Song, The Stochastic fluctuation of the quantile regression curve. Econom. Theory 26 (2010) 1180–1200. [CrossRef] [Google Scholar]
  11. P.J. Huber, Robust estimation of a location parameter. Ann. Math. Stat. 37 (1964) 73–101. [CrossRef] [Google Scholar]
  12. P.J. Huber, Robust Statistics. Wiley Series in Probab. Math. Statist. John Wiley and Sons, Inc., New York (1981). [Google Scholar]
  13. G. Knafl, J. Sacks and D. Ylvisaker, Confidence bands for regression functions. J. Amer. Stat. Associat. 80 (1985) 683–691. [CrossRef] [Google Scholar]
  14. R. Koenker, Quantile Regression. New York, Cambridge University Press (2005). [Google Scholar]
  15. R. Koenker and G. Basset, Regression quantiles. Econometrica 46 (1978) 33–50. [Google Scholar]
  16. E. Kong, O. Linton and Y. Xia, Uniform Bahadur representation for local polynomial estimates of M–regression and its application to the additive model. Econom. Theory. 26 (2010) 159–166. [CrossRef] [Google Scholar]
  17. D.H.-Y. Leung, Cross–validation in nonparametric regression with outliers. Ann. Statist. 33 (2005) 2291–2310. [CrossRef] [MathSciNet] [Google Scholar]
  18. Q. Li and J.S. Racine, Nonparametric estimation of conditional CDF and quantile function with mixed categorical and continuous data. J. Busin. Econ. Statist. 26 (2008) 423–434. [CrossRef] [Google Scholar]
  19. R. Maronna, D. Martin and V. Yohai, Robust statistics, theory and methods. Wiley (2006). [Google Scholar]
  20. J.L. Powell, Censored regression quantiles. J. Econom. 32 (1986) 143–155. [CrossRef] [Google Scholar]
  21. M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat. 23 (1952) 470-472. [Google Scholar]
  22. C.J. Stone, Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 (1982) 1040–1053. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Sun and C.R. Loader, Simultaneous confidence bands for linear regression and smoothing. Ann. Statist. 22 (1994) 1328–1345. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Tusnàdy, A remark on the approximation of the sample distribution function in the multidimensional case. Period. Math. Hungar. 8 (1977) 53-55. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Wang and L. Yang, Polynomial spline confidence bands for regression curves. Statistica Sinica. 19 (2009) 325–342. [Google Scholar]
  26. K. Yu and M.C. Jones, Local Linear Quantile Regression. J. Amer. Stat. Associat. 93 (1998) 228–237. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.