Free Access
Issue
ESAIM: PS
Volume 18, 2014
Page(s) 251 - 264
DOI https://doi.org/10.1051/ps/2013034
Published online 25 July 2014
  1. R.J. Adler, An introduction to continuity, extrema, and related topics for general gaussian processes. Lect. Note Ser. Institute of Mathematical Statistics (1990). [Google Scholar]
  2. P.J. Bickel and E. Levina, Covariance regularization by thresholding. Ann. Statist. 36 (2008) 2577–2604. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Bigot, R. Biscay, J.-M. Loubes and L.M. Alvarez, Group lasso estimation of high-dimensional covariance matrices. J. Machine Learn. Res. (2011). [Google Scholar]
  4. J. Bigot, R. Biscay, J.-M. Loubes and L. Muñiz-Alvarez, Nonparametric estimation of covariance functions by model selection. Electron. J. Statis. 4 (2010) 822–855. [CrossRef] [Google Scholar]
  5. J. Bigot, R. Biscay Lirio, J.-M. Loubes and L. Muniz Alvarez, Adaptive estimation of spectral densities via wavelet thresholding and information projection (2010). [Google Scholar]
  6. R. Biscay, L.M. Rodrguez and E. Daz-Frances, Cross-validation of covariance structures using the frobenius matrix distance as a discrepancy function. J. Stat. Comput. Simul. 58 (1997) 195–215. [CrossRef] [Google Scholar]
  7. T. Cai and M. Yuan, Nonparametric covariance function estimation for functional and longitudinal data. Technical report (2010). [Google Scholar]
  8. N.A.C. Cressie, Statistics for spatial data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Revised reprint of the 1991 edition, A Wiley-Interscience Publication. John Wiley and Sons Inc., New York (1993). [Google Scholar]
  9. P.J. Diggle and A.P. Verbyla, Nonparametric estimation of covariance structure in longitudinal data. Biometrics 54 (1998) 401–415. [CrossRef] [PubMed] [Google Scholar]
  10. A.G. Journel, Kriging in terms of projections. J. Int. Assoc. Math. Geol. 9 (1977) 563–586. [CrossRef] [Google Scholar]
  11. C.R. Rao, Linear statistical inference and its applications. Wiley ser. Probab. Stastis. Wiley, 2nd edn. (1973). [Google Scholar]
  12. G.A.F. Seber, A matrix handbook for statisticians. Wiley ser. Probab. Stastis. Wiley (2008). [Google Scholar]
  13. G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. Wiley (1986). [Google Scholar]
  14. C.M. Stein, Estimation of the mean of a multivariate normal distribution. Ann. Statis. 9 (1981) 1135–1151. [Google Scholar]
  15. M.L. Stein. Interpolation of spatial data. Some theory for Kriging. Springer Ser. Statis. Springer-Verlag, New York (1999). [Google Scholar]
  16. A.B. Tsybakov, Introduction à l’estimation non-paramétrique. Vol. 41 of Math. Appl. Springer (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.