Free Access
Volume 18, 2014
Page(s) 145 - 170
Published online 28 November 2013
  1. F. Aurzada and C. Baumgarten, Survival probabilities of weighted random walks. ALEA Lat. Amer. J. Probab. Math. Stat. 8 (2011) 235–258. [Google Scholar]
  2. F. Aurzada and T. Simon, Persistence probabilities and exponents. arXiv:1203.6554 (2012). [Google Scholar]
  3. P.J. Brockwell and R.A. Davis, Time series: theory and methods. Springer Series in Statistics. Springer-Verlag, New York (1987). [Google Scholar]
  4. A. Dembo, J. Ding and F. Gao, Persistence of iterated partial sums. Ann. Inst. Henri Poincaré B. To appear (2012). [Google Scholar]
  5. A. Dembo, B. Poonen, Q.-M. Shao and O. Zeitouni, Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15 857–892 (2002). Electronic. [CrossRef] [MathSciNet] [Google Scholar]
  6. R.A. Doney, On the asymptotic behaviour of first passage times for transient random walk. Probab. Theory Related Fields 81 (1989) 239–246,. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.N. Elaydi, An introduction to difference equations. Undergraduate Texts in Mathematics. Second edition, Springer-Verlag, New York (1999). [Google Scholar]
  8. J.D. Esary, F. Proschan and D.W. Walkup, Association of random variables, with applications. Ann. Math. Statist. 38 (1967) 1466–1474. [CrossRef] [MathSciNet] [Google Scholar]
  9. W. Feller, An introduction to probability theory and its applications. Second edition, John Wiley and Sons Inc., New York (1971). [Google Scholar]
  10. G.R. Grimmett and D.R. Stirzaker, One thousand exercises in probability. Oxford University Press, Oxford (2001). [Google Scholar]
  11. M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer-Verlag, Berlin Heidelberg New York (1991). [Google Scholar]
  12. W.V. Li and Q.-M. Shao, Recent developments on lower tail probabilities for Gaussian processes. Cosmos 1 (2005) 95–106. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Lukacs, Characteristic functions. Second edition, revised and enlarged. Hafner Publishing Co., New York (1970). [Google Scholar]
  14. A. Novikov and N. Kordzakhia, Martingales and first passage times of AR(1) sequences. Stochast. 80 (2008) 197–210. [Google Scholar]
  15. Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions. In Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), vol. 46 of Progr. Probab. Birkhäuser, Basel (2000) 39–65. [Google Scholar]
  16. Ya. G. Sinaĭ, Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148 (1992) 601–621. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.