Free Access
Issue |
ESAIM: PS
Volume 18, 2014
|
|
---|---|---|
Page(s) | 130 - 144 | |
DOI | https://doi.org/10.1051/ps/2013030 | |
Published online | 28 November 2013 |
- E. Belitser and F. Enikeeva, Empirical Bayesian Test of the Smoothness. Math. Methods Stat. 17 (2008) 1–18. [CrossRef] [Google Scholar]
- A.D. Bull, A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets. Constructive Approximation 37 (2013) 295–309. [CrossRef] [MathSciNet] [Google Scholar]
- A.D. Bull, Honest adaptive confidence bands and self-similar functions. Electron. J. Stat. 6 (2012) 1490–1516. [CrossRef] [MathSciNet] [Google Scholar]
- T. Cai, Adaptive Wavelet Estimation: A Block Thresholding and Oracle Inequality Approach. Ann. Stat. 27 (1999) 898–924. [Google Scholar]
- T. Cai and M.G. Low, An adaptation theory for nonparametric confidence intervals. Ann. Stat. 32 5 (2004) 1805–1840. [Google Scholar]
- T. Cai and M.G. Low, Adaptive confidence balls. Ann. Stat. 34 (2006) 202–228. [CrossRef] [MathSciNet] [Google Scholar]
- E. Chicken and T. Cai, Block thresholding for density estimation: local and global adaptivity. J. Multivariate Anal. 95 (2005) 76–106. [CrossRef] [MathSciNet] [Google Scholar]
- I. Daubechies, Ten lectures on wavelets. SIAM Philadelphia (1992). [Google Scholar]
- D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Stat. 26 (1996) 879–921. [Google Scholar]
- D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Stat. 24 (1996) 508–539. [CrossRef] [MathSciNet] [Google Scholar]
- K. Dziedziul, M. Kucharska and B. Wolnik, Estimation of the smoothness parameter. J. Nonparametric Stat. 23 (2011) 991–1001. [CrossRef] [Google Scholar]
- E. Giné and R. Nickl, Confidence bands in density estimation. Ann. Stat. 38 (2010) 1122–1170. [Google Scholar]
- A. Gloter and M. Hoffmann, Nonparametric reconstruction of a multifractal function from noisy data. Probab. Theory Relat. Fields 146 (2010) 155187. [CrossRef] [Google Scholar]
- P. Hall and M.C. Jones, Adaptive M-Estimation in Nonparametric Regression. Ann. Stat. 18 (1990) 1712–1728. [CrossRef] [Google Scholar]
- W. Härdle, G. Kerkyacharian, D. Picard and A.B. Tsybakov, Wavelets, Approximation and Statistical Applications. Springer-Verlag, New York (1998). [Google Scholar]
- M. Hoffmann and R. Nickl, On adaptive inference and confidence bands. Ann. Stat. 39 (2011) 2383–2409. [Google Scholar]
- L. Horvath and P. Kokoszka, Change-point detection with non parametric regression. Statistics: A J. Theoret. Appl. Stat. 36 (2002) 9–31. [CrossRef] [Google Scholar]
- Y. Ingster and N. Stepanova, Estimation and detection of functions from anisotropic Sobolev classes. Electron. J. Stat. 5 (2011) 484–506. [CrossRef] [Google Scholar]
- S. Jaffard, Conjecture de Frisch et Parisi et généricité des fonctions multifractales. C. R. Acad. Sci. Paris Sér. I Math. 330 4 (2000) 265–270. [CrossRef] [Google Scholar]
- M.G. Low, On nonparametric confidence intervals. Ann. Stat. 25 (1997) 2547–2554. [Google Scholar]
- Y. Meyer, Wavelets and operators. In Cambridge Stud. Advanc. Math. of vol. 37. Translated from the 1990 French original by D.H. Salinger. Cambridge University Press, Cambridge. (1992). [Google Scholar]
- S. Ropela, Spline bases in Besov spaces. Bull. Acad. Pol. Sci. Serie Math. astr. Phys. 24 (1976) 319–325. [Google Scholar]
- S.J. Sheather and M.C. Jones, A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. J. Royal Stat. Soc. Ser. B. 53 (1991) 683–690. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.