Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 432 - 443
DOI https://doi.org/10.1051/ps/2012006
Published online 21 May 2013
  1. M.A. Arcones, Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 (1994) 2242–2274. [CrossRef] [Google Scholar]
  2. J. Beran, A goodness-of-fit test for time series with long-range dependence. J. R. Stat. Soc., Ser. B Stat. Methodol. 54 (1992) 749–760. [Google Scholar]
  3. J.O. Berger and M. Delampady, Testing precise hypotheses. Stat. Sci. 2 (1987) 317–335. [CrossRef] [Google Scholar]
  4. W.W. Chen and R.S. Deo, A generalized Portmanteau goodness-of-fit test for time series models. Econ. Theory 20 (2004) 382–416. [Google Scholar]
  5. W.W. Chen and R.S. Deo, Estimation of misspecified long-memory models. J. Econom. 134 (2006) 257–281. [CrossRef] [Google Scholar]
  6. R. Dahlhaus, Efficient parameter estimation for self-similar processes. Ann. Stat. 17 (1989) 1749–1766. [CrossRef] [MathSciNet] [Google Scholar]
  7. R.S. Deo and W.W. Chen, On the integral of the squared periodogram. Stoc. Proc. Appl. 85 (2000) 159–176. [CrossRef] [Google Scholar]
  8. H. Dette, A consistent test for the functional form of a regression based on a difference of variance estimators. Ann. Statist. 27 (1999) 1012–1040. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Dette, A consistent test for heteroscedasticity in nonparametric regression based on the kernel method. J. Statist. Plann. Inference 103 (2002) 311–329. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Dette and A. Munk, Some methodological aspects of validation of models in nonparametric regression. Stat. Neerl. 57 (2003) 207–244. [CrossRef] [Google Scholar]
  11. H. Dette and I. Spreckelsen, A note on a specification test for time series models based on spectral density estimation. Scand. J. Stat. 30 (2003) 481–491. [CrossRef] [Google Scholar]
  12. G. Fay and A. Philippe, Goodness-of-fit test for long range dependent processes. ESAIM: PS 6 (2002) 239–258. [CrossRef] [EDP Sciences] [Google Scholar]
  13. R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Stat. 14 (1986) 517–532. [Google Scholar]
  14. L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate. Probab. Theory Relat. Fields 86 (1990) 87–104. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.T. Greene and B.D. Fielitz, Long-term dependence in common stock returns. J. Financ. Econ. 4 (1977) 339–349. [CrossRef] [Google Scholar]
  16. C. Hurvich, E. Moulines and P. Soulier, The FEXP estimator for potentially non-stationary linear time series. Stochastic Processes Appl. 97 (2002) 307–340. [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros and N. Mamassis, HESS opinions: climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability. Hydrol. Earth Syst. Sci. 13 (2009) 247–257. [CrossRef] [Google Scholar]
  18. A. Mokkadem, A measure of information and its applications to test for randomness against ARMA alternatives and to goodness-of-fit test. Stochastic Processes Appl. 72 (1997) 145–159. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Paparoditis, Spectral density based goodness-of-fit tests for time series models. Scand. J. Statist. 27 (2000) 143–176. [CrossRef] [MathSciNet] [Google Scholar]
  20. K. Park and W. Willinger, Self-similar network traffic: an overview, in Self-Similar Network Traffic and Performance Evaluation, edited by K. Park and W. Willinger. Wiley Interscience, New York (2000) 1–39. [Google Scholar]
  21. E. Stroe-Kunold, T. Stadnytska, J. Werner and S. Braun, Estimating long-range dependence in time series: An evaluation of estimators implemented in R. Behavior Res. Methods 41 (2009) 909–923. [CrossRef] [Google Scholar]
  22. P. Whittle, Estimation and information in stationary time series. Ark. Mat. 1 (1953) 423–434. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.