Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 419 - 431
DOI https://doi.org/10.1051/ps/2012004
Published online 21 May 2013
  1. I.A. Ahmad and P.E. Lin, A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Trans. Inf. Theory 22 (1976) 372–375. [CrossRef] [Google Scholar]
  2. I.A. Ahmad and P.E. Lin, A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Trans. Inf. Theory 36 (1989) 688–692. [CrossRef] [Google Scholar]
  3. C. Andrieu and J. Thoms, A tutorial on adaptive MCMC. Stat. Comput. 18 (2008) 343–373. [CrossRef] [Google Scholar]
  4. Y.F. Atchadé and J. Rosenthal, On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11 (2005) 815–828. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Billingsley, Probability and Measure, 3rd edition. Wiley, New York (2005). [Google Scholar]
  6. D. Chauveau and P. Vandekerkhove, Improving convergence of the Hastings-Metropolis algorithm with an adaptive proposal. Scand. J. Stat. 29 (2002) 13–29. [CrossRef] [Google Scholar]
  7. D. Chauveau and P. Vandekerkhove, A Monte Carlo estimation of the entropy for Markov chains. Methodol. Comput. Appl. Probab. 9 (2007) 133–149. [CrossRef] [Google Scholar]
  8. Y.G. Dmitriev and F.P. Tarasenko, On the estimation of functionals of the probability density and its derivatives. Theory Probab. Appl. 18 (1973) 628–633. [CrossRef] [Google Scholar]
  9. Y.G. Dmitriev and F.P. Tarasenko, On a class of non-parametric estimates of non-linear functionals of density. Theory Probab. Appl. 19 (1973) 390–394. [CrossRef] [Google Scholar]
  10. R. Douc, A. Guillin, J.M. Marin and C.P. Robert, Convergence of adaptive mixtures of importance sampling schemes. Ann. Statist. 35 (2007) 420–448. [CrossRef] [MathSciNet] [Google Scholar]
  11. E.J. Dudevicz and E.C. Van Der Meulen Entropy-based tests of uniformity. J. Amer. Statist. Assoc. 76 (1981) 967–974. [CrossRef] [MathSciNet] [Google Scholar]
  12. P.P.B. Eggermont and V.N. LaRiccia, Best asymptotic normality of the Kernel density entropy estimator for Smooth densities. IEEE Trans. Inf. Theory 45 (1999) 1321–1326. [CrossRef] [Google Scholar]
  13. W.R. Gilks, S. Richardson and D.J. Spiegelhalter, Markov Chain Monte Carlo in practice. Chapman & Hall, London (1996) [Google Scholar]
  14. W.R. Gilks, G.O. Roberts and S.K. Sahu, Adaptive Markov chain Monte carlo through regeneration. J. Amer. Statist. Assoc. 93 (1998) 1045–1054. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Györfi and E.C. Van Der Meulen, Density-free convergence properties of various estimators of the entropy. Comput. Statist. Data Anal. 5 (1987) 425–436. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Györfi and E.C. Van Der Meulen, An entropy estimate based on a Kernel density estimation, Limit Theorems in Probability and Statistics Pécs (Hungary). Colloquia Mathematica societatis János Bolyai 57 (1989) 229–240. [Google Scholar]
  17. H. Haario, E. Saksman and J. Tamminen, An adaptive metropolis algorithm. Bernouilli 7 (2001) 223–242. [CrossRef] [MathSciNet] [Google Scholar]
  18. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97–109. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Holden, Geometric convergence of the Metropolis-Hastings simulation algorithm. Statist. Probab. Lett. 39 (1998). [Google Scholar]
  20. A.V. Ivanov and M.N. Rozhkova, Properties of the statistical estimate of the entropy of a random vector with a probability density (in Russian). Probl. Peredachi Inform. 17 (1981) 33–43. Translated into English in Probl. Inf. Transm. 17 (1981) 171–178. [Google Scholar]
  21. S.F. Jarner and E. Hansen, Geometric ergodicity of metropolis algorithms. Stoc. Proc. Appl. 85 (2000) 341–361. [CrossRef] [Google Scholar]
  22. K.L. Mengersen and R.L. Tweedie, Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 (1996) 101–121. [CrossRef] [MathSciNet] [Google Scholar]
  23. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equations of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 1087–1092. [NASA ADS] [CrossRef] [Google Scholar]
  24. A. Mokkadem, Estimation of the entropy and information of absolutely continuous random variables. IEEE Trans. Inf. Theory 23 (1989) 95–101. [CrossRef] [PubMed] [Google Scholar]
  25. R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2010), ISBN 3-900051-07-0. [Google Scholar]
  26. G.O. Roberts and J.S. Rosenthal, Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16 (2001) 351–367. [CrossRef] [MathSciNet] [Google Scholar]
  27. G.O. Roberts and R.L. Tweedie, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 (1996) 95–110. [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Scott, Multivariate Density Estimation: Theory, Practice and Visualization. John Wiley, New York (1992). [Google Scholar]
  29. F.P. Tarasenko, On the evaluation of an unknown probability density function, the direct estimation of the entropy from independent observations of a continuous random variable and the distribution-free entropy test of goodness-of-fit. Proc. IEEE 56 (1968) 2052–2053. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.