Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 135 - 178
DOI https://doi.org/10.1051/ps/2011151
Published online 08 February 2013
  1. A. Ayache and J. Lévy Véhel, The generalized multifractional Brownian motion. Stat. Inference Stoch. Process. 3 (2000) 7–18. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13 (1997) 19–89. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Bentkus, A. Juozulynas and V. Paulauskas, Lévy-LePage series representation of stable vectors : convergence in variation. J. Theoret. Probab. 14 (2001) 949–978. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.J. Falconer, Tangent fields and the local structure of random fields. J. Theoret. Probab. 15 (2002) 731–750. [CrossRef] [MathSciNet] [Google Scholar]
  5. K.J. Falconer, The local structure of random processes. J. London Math. Soc. 267 (2003) 657–672. [CrossRef] [MathSciNet] [Google Scholar]
  6. K.J. Falconer and J. Lévy Véhel, Multifractional, multistable, and other processes with prescribed local form. J. Theoret. Probab. (2008) DOI: 10.1007/s10959-008-0147-9. [Google Scholar]
  7. K.J. Falconer and L. Lining, Multistable random measures and multistable processes. Preprint (2009). [Google Scholar]
  8. K.J. Falconer, R. Le Guével, and J. Lévy Véhel, Localisable moving average stable and multistable processes. Stoch. Models (2009) 648–672. [CrossRef] [MathSciNet] [Google Scholar]
  9. T.S. Ferguson and M.J. Klass, A representation of independent increment processes without Gaussian components. Ann. Math. Stat. 43 (1972) 1634–1643. [CrossRef] [Google Scholar]
  10. E. Herbin, From -parameter fractional Brownian motions to -parameter multifractional Brownian motion. Rocky Mt. J. Math. 36 (2006) 1249–1284. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Herbin and J. Lévy Véhel, Stochastic 2 micro-local analysis. Stoch. Proc. Appl. 119 (2009) 2277–2311. [CrossRef] [Google Scholar]
  12. A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven in Hilbertchen Raume. Doklady 26 (1940) 115–118. [Google Scholar]
  13. R. Le Guével and J. Lévy Véhel, A Ferguson–Klass–LePage series representation of multistable multifractional motions and related processes, preprint (2009). Available at http://arxiv.org/abs/0906.5042. [Google Scholar]
  14. R. Le Page, Multidimensional infinitely divisible variables and processes. I. Stable caseTech. Rep. 292, Dept. Stat., Stanford Univ. (1980). [Google Scholar]
  15. R. Le Page, Multidimensional infinitely divisible variables and processes, II Probability in Banach Spaces III. Springer, New York, Lect. Notes Math. 860 (1980) 279–284. [CrossRef] [Google Scholar]
  16. M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer-Verlag (1996). [Google Scholar]
  17. B.B. Mandelbrot and J. Van Ness, Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968) 422–437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  18. R.F. Peltier and J. Lévy Véhel, Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l’INRIA, No. 2645 (1995). Available at : http://www-rocq1.inria.fr/fractales/index.php?page=publications. [Google Scholar]
  19. V. Petrov, Limit Theorems of Probability Theory. Oxford Science Publication (1995). [Google Scholar]
  20. J. Rosinski, On series representations of infinitely divisible random vectors. Ann. Probab. 18 (1990) 405–430. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall (1994). [Google Scholar]
  22. S. Stoev and M.S. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36 (2004) 1085–1115 [CrossRef] [Google Scholar]
  23. S. Stoev and M.S. Taqqu, Path properties of the linear multifractional stable motion. Fractals 13 (2005) 157–178. [CrossRef] [Google Scholar]
  24. B. Von Bahr and C.G. Essen, Inequalities for the th absolute moment of a sum of Random variables, 1 ¡= r ¡= 2. Ann. Math. Stat. 36 (1965) 299–303. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.