Free Access
Volume 17, 2013
Page(s) 13 - 32
Published online 06 December 2012
  1. M. Abramowitz and I.A. Stegun Eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Reprint of the 1972 edition, Dover Publications, Inc., New York (1992) [Google Scholar]
  2. Y. Aït-Sahalia and J. Jacod, Fisher’s information for discretely sampled Lévy processes. Econometrica 76 (2008) 727–761. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.G. Akritas and R.A. Johnson, Asymptotic inference in Lévy processes of the discontinuous type. Ann. Stat. 9 (1981) 604–614. [CrossRef] [Google Scholar]
  4. S. Asmussen and J. Rosiński, Approximations of small jumps of Levy processes with a view towards simulation. J. Appl. Probab. 38 (2001) 482–493. [CrossRef] [MathSciNet] [Google Scholar]
  5. O.E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. A 353 (1977) 401–419. [Google Scholar]
  6. O.E. Barndorff-Nielsen, Normal inverse Gaussian processes and the modelling of stock returns. Research report 300, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus (1995) [Google Scholar]
  7. O.E. Barndorff-Nielsen, Processes of normal inverse Gaussian type. Finance Stoch. 2 (1998) 41–68. [Google Scholar]
  8. D.R. Cox and N. Reid, Parameter orthogonality and approximate conditional inference. With a discussion. J. R. Stat. Soc., Ser. B 49 (1987) 1–39. [Google Scholar]
  9. J. Jacod, Inference for stochastic processes, in Handbook of Financial Econometrics, edited by Y. Aït-Sahalia and L.P. Hansen, Amsterdam, North-Holland (2010) [Google Scholar]
  10. B. Jørgensen and S.J. Knudsen, Parameter orthogonality and bias adjustment for estimating functions. Scand. J. Statist. 31 (2004) 93–114. [CrossRef] [MathSciNet] [Google Scholar]
  11. O. Kallenberg, Foundations of Modern Probability. 2nd edition, Springer-Verlag, New York (2002) [Google Scholar]
  12. D. Karlis, An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution. Stat. Probab. Lett. 57 (2002) 43–52. [CrossRef] [Google Scholar]
  13. D. Karlis and J. Lillestöl, Bayesian estimation of NIG models via Markov chain Monte Carlo methods. Appl. Stoch. Models Bus. Ind. 20 (2004) 323–338. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Kawai and H. Masuda, On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling. Stat. Probab. Lett. 81 (2011) 460–469. [CrossRef] [Google Scholar]
  15. L. Le Cam, Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses. Univ. California Publ. Stat. 3 (1960) 37–98. [Google Scholar]
  16. L. Le Cam and G.L. Yang, Asymptotics in Statistics. Some Basic Concepts. 2nd edition, Springer-Verlag, New York (2000) [Google Scholar]
  17. H. Masuda, Notes on estimating inverse-Gaussian and gamma subordinators under high-frequency sampling. Ann. Inst. Stat. Math. 61 (2009) 181–195. [CrossRef] [Google Scholar]
  18. H. Masuda, Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J. Japan Stat. Soc. 39 (2009) 49–75. [Google Scholar]
  19. K. Prause, The Generalized Hyperbolic Model : Estimation, Financial Derivatives, and Risk Measures. Ph.D. thesis, University of Freiburg (1999). Available at [Google Scholar]
  20. S. Raible, Lévy Processes in Finance : Theory, Numerics, and Empirical Facts. Ph.D. thesis, University of Freiburg (2000). Available at [Google Scholar]
  21. K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999) [Google Scholar]
  22. A.N. Shiryaev, Probability. 2nd edition, Springer-Verlag, New York (1996) [Google Scholar]
  23. H. Strasser, Mathematical Theory of Statistics. Statistical Experiments and Asymptotic Decision Theory. Walter de Gruyter & Co., Berlin (1985) [Google Scholar]
  24. A.W. van der Vaart, Asymptotic Statistics. Cambridge University Press, Cambridge (1998) [Google Scholar]
  25. J.H.C. Woerner, Statistical Analysis for Discretely Observed Lévy Processes. Ph.D. thesis, University of Freiburg (2001). Available at [Google Scholar]
  26. J.H.C. Woerner, Estimating the skewness in discretely observed Lévy processes. Econ. Theory 20 (2004) 927–942. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.