Free Access
Volume 17, 2013
Page(s) 1 - 12
Published online 06 December 2012
  1. R.R. Bahadur, Some limit theorems in statistics. CBMS-NSF Regional Conference Series in Appl. Math. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1971). [Google Scholar]
  2. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 (1952) 493–507. [Google Scholar]
  3. E. Cuvelier and M. Noirhomme-Fraiture, An approach to stochastic process using quasi-arithmetic means, in Recent advances in stochastic modeling and data analysis, World Scientific (2007) 2–9. [Google Scholar]
  4. E. Cuvelier and M. Noirhomme-Fraiture, Parametric families of probability distributions for functional data using quasi-arithmetic means with Archimedean generators, in Functional and operatorial statistics, Contrib. Statist. Springer (2008) 127–133. [Google Scholar]
  5. V.H. de la Peña, T.L. Lai and Q.-M. Shao, Self-normalized processes : Limit theory and statistical applications, in Probab. Appl. (New York). Springer-Verlag, Berlin (2009). [Google Scholar]
  6. A. Dembo and Q.-M. Shao, Self-normalized large deviations in vector spaces, in High dimensional probability (Oberwolfach, 1996), Birkhäuser, Basel. Progr. Probab. 43 (1998) 27–32. [Google Scholar]
  7. A. Dembo and Q.-M. Shao, Large and moderate deviations for Hotelling’s T2-statistic. Electron. Comm. Probab. 11 (2006) 149–159. [CrossRef] [MathSciNet] [Google Scholar]
  8. G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press, 2d ed. (1952). [Google Scholar]
  9. A. Kolmogoroff, Sur la notion de la moyenne. Rendiconti Accad. d. L. Roma 12 (1930) 388–391. [Google Scholar]
  10. T.L. Lai and Q.-M. Shao, Self-normalized limit theorems in probability and statistics, in Asymptotic theory in probability and statistics with applications, Int. Press, Somerville, MA Adv. Lect. Math. (ALM) 2 (2008) 3–43. [Google Scholar]
  11. Y. Nikitin, Asymptotic efficiency of non parametric tests. Cambridge University Press (1995). [Google Scholar]
  12. M. Nagumo, Über eine Klasse der Mittelwerte. Japan. J. Math. 7 (1930) 71–79. [Google Scholar]
  13. E. Porcu, J. Mateu and G. Christakos, Quasi-arithmetic means of covariance functions with potential applications to space-time data. J. Multivar. Anal. 100 (2009) 1830–1844. [CrossRef] [Google Scholar]
  14. Q.-M. Shao, Self-normalized large deviations. Ann. Probab. 25 (1997) 285–328. [CrossRef] [MathSciNet] [Google Scholar]
  15. Q.-M. Shao, A note on the self-normalized large deviation. Chinese J. Appl. Probab. Statist. 22 (2006) 358–362. [MathSciNet] [Google Scholar]
  16. A.V. Tchirina, Large deviations for a class of scale-free statistics under the gamma distribution. J. Math. Sci. 128 (2005) 2640–2655. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Systems Man Cybernet. 18 (1988) 183–190. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.