Free Access
Volume 16, 2012
Page(s) 277 - 305
Published online 11 July 2012
  1. S. Benachour, B. Roynette, D. Talay and P. Vallois, Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stoc. Proc. Appl. 75 (1998) 173–201. [CrossRef]
  2. S. Benachour, B. Roynette and P. Vallois, Nonlinear self-stabilizing processes. II. Convergence to invariant probability. Stoc. Proc. Appl. 75 (1998) 203–224. [CrossRef]
  3. P. Cattiaux, A. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140 (2008) 19–40. [CrossRef]
  4. T. Funaki, A certain class of diffusion processes associated with nonlinear parabolic equations. Z. Wahrsch. Verw. Gebiete 67 (1984) 331–348. [CrossRef] [MathSciNet]
  5. S. Herrmann and J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes. Stoc. Proc. Appl. 120 (2010) 1215–1246. [CrossRef]
  6. S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes : asymptotic analysis in the small noise limit. Electron. J. Probab. 15 (2010) 2087–2116. [CrossRef] [MathSciNet]
  7. S. Herrmann, P. Imkeller and D. Peithmann, Large deviations and a Kramers’ type law for self-stabilizing diffusions. Ann. Appl. Probab. 18 (2008) 1379–1423. [CrossRef] [MathSciNet]
  8. F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stoc. Proc. Appl. 95 (2001) 109–132. [CrossRef] [MathSciNet]
  9. H.P. McKean Jr., A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 (1966) 1907–1911. [CrossRef]
  10. A.-S. Sznitman, Topics in propagation of chaos, in École d’Été de Probabilités de Saint-Flour XIX–1989, Springer, Berlin. Lect. Notes Math. 1464 (1991) 165–251. [CrossRef]
  11. Y. Tamura, on asymptotic behaviors of the solution of a nonlinear diffusion equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984) 195–221. [MathSciNet]
  12. Y. Tamura, Free energy and the convergence of distributions of diffusion processes of McKean type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 443–484. [MathSciNet]
  13. A.Yu. Veretennikov, On ergodic measures for McKean–Vlasov stochastic equations. Monte Carlo and Quasi-Monte Carlo Methods 2004 (2006) 471–486. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.