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SELF-STABILIZING PROCESSES: UNIQUENESS PROBLEM FOR STATIONARY
MEASURES AND CONVERGENCE RATE IN THE SMALL-NOISE LIMIT

Samuel Herrmann
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Abstract. In the context of self-stabilizing processes, that is processes attracted by their own law,
living in a potential landscape, we investigate different properties of the invariant measures. The interac-
tion between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann
and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear inter-
action and under suitable conditions, there exists a unique symmetric limit measure associated to the
set of invariant measures in the small-noise limit. The aim of this study is essentially to point out
that this statement leads to the existence, as the noise intensity is small, of one unique symmetric
invariant measure for the self-stabilizing process. Informations about the asymmetric measures shall
be presented too. The main key consists in estimating the convergence rate for sequences of stationary
measures using generalized Laplace’s method approximations.
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1. Introduction

In the framework of nonlinear diffusions, self-stabilizing stochastic processes play a particular rule. Introduced
by McKean [9] these processes attracted by their own law are solution of the so-called McKean–Vlasov equation:

dXt = dWt + b[Xt, ut] dt, X0 = x ∈ R, (1.1)

where ut is the law of Xt, b[x, u] :=
∫

R
b(x, y)u(dy) for any probability measure u and (Wt, t ≥ 0) represents a

one-dimensional Brownian motion. A solution of (1.1) is in fact a couple (Xt, ut) such that, for any t ≥ 0, ut

represents the distribution of the variable Xt. Such processes appear naturally in huge systems of particles in
interaction by the so-called propagation of chaos phenomenon, see [10] for an introduction to this topic.

The common mathematical problems related to these self-stabilizing processes concern the existence and
uniqueness of solutions to (1.1) and ergodicity properties like the existence and uniqueness of stationary mea-
sures, the convergence of the law of Xt to the invariant law as time elapses. A relative numerous literature,
based on fixed point technics, free-energy methods or logarithmic Sobolev inequalities, presents results concern-
ing the existence and uniqueness of invariant measures and ergodic behavior. Each study deals with a particular
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family of interaction function b, let us present an incomplete selection of works: [1–4,8,11–13].In the situations
described previously, the results are quite similar than those developed in the classical diffusion context even if
the methods of proof are clearly different.

However the self-attraction structure of (1.1) can lead to surprising phenomena like non-uniqueness of in-
variant measures. The aim of this paper is namely to focus our attention to some of them. Let us introduce the
process we are interested in: the solution (Xt, t ≥ 0) of the following one-dimensional McKean–Vlasov equation:

dXt =
√

εdWt − V ′(Xt)dt −
∫

R

F ′(Xt − x)duε
t(x)dt, (1.2)

where uε
t(x) represents the distribution of Xt and ε is a small positive parameter. In other words the function b

introduced above satisfies b(x, y) := −V ′(x)−F ′(x− y): V is called the environment potential and F represents
the interaction potential. The functions V and F are assumed to verify different conditions developed at the
end of the introduction and related to [1, 2]. Let us just note two principal properties: F is an even convex
function with F (0) = 0 and limx→∞ F (x) = +∞ and V is an even double-well potential whose global minima
are reached for x = −a and x = a > 0.

In a preceding paper [5], the authors pointed out, under some suitable conditions and for small-noise intensity
ε, that the nonlinearity of the dynamical system permits the existence of at least three invariant measures, one
symmetric (due to the symmetry of F and V ) and two so-called outlying measures which are concentrated around
−a or a, the bottoms of the double-well landscape V . Moreover, in the particular case of convex functions V ′′

and linear functions F ′, there exist exactly three invariant measures for ε small enough. The aim of this paper
is to take the first steps in order to generalize this nice result to general interaction functions F .

In other words, we shall present several statements which are close to the following conjecture: under suitable
conditions (convexity of F ′′ and V ′′ for instance), for any M > 0 large enough, there exists ε0 > 0 such that (1.1)
admits exactly three invariant measures whose first moments are bounded by M for all ε < ε0.

The proofs of such local uniqueness results are based on the convergence rate for sequences of invariant
measures denoted by (uε, ε > 0) and associated to a limit measure u0. In fact, the convergence rate depends on
the limit measure u0 considered and is estimated through Laplace’s method type approximations.

The paper shall begin with the detailed assumptions concerning the interaction function F and the environ-
ment function V of (1.2).

Main assumptions

We assume the following properties for the function V (Fig. 1):

(V-1) Regularity: V ∈ C∞(R, R). C∞ denotes the Banach space of infinitely bounded continuously differentiable
function.

(V-2) Symmetry: V is an even function.
(V-3) V is a double-well potential. The equation V ′(x) = 0 admits exactly three solutions : a, −a and 0 with

a > 0; V ′′(a) > 0 and V ′′(0) < 0. The bottoms of wells are reached for x = a and x = −a.
(V-4) There exist two constants C4, C2 > 0 such that ∀x ∈ R, V (x) ≥ C4x

4 − C2x
2.

(V-5) lim
x→±∞V ′′(x) = +∞ and ∀x ≥ a, V ′′(x) > 0.

(V-6) Analyticity: there exists an analytic function V such that V (x) = V(x) for all x ∈ [−a; a].
(V-7) The growth of the potential V is at most polynomial: there exist q ∈ N∗ and Cq > 0 such that |V ′(x)| ≤

Cq

(
1 + x2q

)
.

(V-8) Initialization: V (0) = 0.

Typically, V is a double-well polynomial function. But our results can be applied to more general functions:
regular functions with polynomial growth as |x| becomes large. We introduce the parameter θ which plays an
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Figure 1. Potential V .

important role in the following:
θ := sup

x∈R

−V ′′(x). (1.3)

Let us note that the simplest example (most famous in the literature) is V (x) = x4

4 − x2

2 which bottoms are
localized in −1 and 1 and with parameter θ = 1.

Let us now present the assumptions concerning the attraction function F .

(F-1) F is an even polynomial function of degree 2n with F (0) = 0. Indeed we consider a classical situation:
the attraction between two points x and y only depends on the distance F (x − y) = F (y − x).

(F-2) F is a convex function.
(F-3) F ′ is a convex function on R+ therefore for any x ≥ 0 and y ≥ 0 such that x ≥ y we obtain F ′(x)−F ′(y) ≥

F ′′(0)(x − y).
(F-4) The polynomial growth of the attraction function F is related to the growth condition (V-7): |F ′(x) −

F ′(y)| ≤ Cq|x − y|(1 + |x|2q−2 + |y|2q−2).

Let us define the parameter α ≥ 0 which shall play an essential role in following:

F ′(x) = αx + F ′
0(x) with α := F ′′(0) ≥ 0. (1.4)

2. Main results

First of all, we are interested in the asymptotic behavior of a sequence of invariant measures (uε, ε > 0)
associated with the self-stabilizing process (1.2). We shall assume that the sequence of the first 2nth moments
{μ2n(ε), ε > 0}, defined by

μk(ε) :=
∫

R

|x|kuε(x)dx

and 2n := deg(F ), is bounded. Let us note that this condition is satisfied for symmetric invariant measures, see
Lemma 5.2 in [6]. In this context, the authors proved the existence of a subsequence (uεk

, k ∈ N) converging
towards discrete measures (Thm. 3.6 in [6]), the set of limit measures being associated with particular system
of equations. In the following we consider an additional condition:

Assumption 2.1. The functions F and V satisfy the assumption (UC) if V ′′ and F ′′ are convex functions.

The assumption (UC) permits to describe precisely the set of limit measures [6] (it shall be assumed in the whole
paper). Indeed there exist a unique symmetric limit measure 1

2 δ−x0 + 1
2 δx0 where x0 is the unique solution (see

Thm. 5.4 in [6]) of the system {
V ′(x0) + 1

2F ′(2x0) = 0,

V ′′(x0) + 1
2F ′′(0) + 1

2F ′′(2x0) ≥ 0.
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Let us just note that x0 = 0 when F ′′(0) ≥ − supx∈R V ′′(x) = −V ′′(0). In the following, we shall also discuss
about the existence of asymmetric limit measures.

The aim of this paper is to describe the convergence rate which depends on the limit measure u0 considered.
Let us first consider the symmetric case which can be divided into three different situations: either F ′′(0) +
V ′′(0) > 0 or F ′′(0) + V ′′(0) = 0 then the unique symmetric limit measure is the trivial measure u0 = δ0 (these
two situations lead to two different convergence rates) either F ′′(0)+V ′′(0) < 0 corresponding to the symmetric
limit measure u0 = 1

2 δ−x0 + 1
2 δx0 , with x0 > 0. In general the convergence is linear with respect to ε when we

consider the asymptotic behavior of the following expression:

〈f, uε〉 − 〈f, u0〉 where 〈f, u〉 :=
∫

R

f(x)u(dx).

In fact some simple arguments permit to present the invariant measure in a particular exponential form: this
idea was previously presented in [5]. Indeed, defining

Wε(x) := V (x) + F ∗ uε(x) − F ∗ uε(0), (2.1)

the following expression holds

uε(x) =
exp[− 2

ε Wε(x)]∫
R

exp[− 2
ε Wε(y)]dy

· (2.2)

Therefore the convergence of the invariant measure is related with the convergence of the function Wε towards
the associated limit

W0 := V + F ∗ u0 − F ∗ u0(0). (2.3)

Theorem 2.2 (Case F ′′(0)+V ′′(0) > 0). Let (uε, ε > 0) be a sequence of symmetric invariant measures which
converges towards the trivial measure u0 = δ0. Then, for any function f ∈ C4 (R, R) with polynomial growth, we
have:

lim
ε−→0

1
ε

{
〈f, uε〉 − 〈f, u0〉

}
=

f ′′(0)
4(F ′′(0) + V ′′(0))

·

When the interaction term in the McKean–Vlasov equation (1.2) is weaker, that is F ′′(0) + V ′′(0) < 0, the
limit measure is different. Nevertheless the convergence rate is also of order ε.

Theorem 2.3 (Case F ′′(0)+V ′′(0) < 0). Let (uε, ε > 0) be a sequence of symmetric invariant measures which
converges towards the unique symmetric limit measure u0 = 1

2 δ−x0 + 1
2 δx0 , with x0 > 0. Then, for any function

f ∈ C4 (R, R) with polynomial growth, the following convergence rate holds

lim
ε→0

〈f, uε〉 − 〈f, u0〉
ε

=
f ′′(x0) + f ′′(−x0)

8W ′′
0 (x0)

+ χ(x0)
f ′(x0) − f ′(−x0)

8W ′′
0 (x0)

where χ(x0) := −V (3)(x0) + F (3)(2x0)
V ′′(x0) + F ′′(2x0)

.

We can observe a singular phenomenon for the intermediate case F ′′(0)+V ′′(0) = 0: the asymptotic behavior
is completely different, we do not obtain the classical order ε. In this context, the limit measure is given by
u0 = δ0 and consequently the pseudo-potential just introduced in (2.3) equals W0(x) = V (x) + F (x). The
convergence rate is directly linked to the slope of the pseudo-potential in a neighborhood of the origin. We
define

k0 := min
{
k ≥ 2 | W

(2k)
0 (0) > 0

}
. (2.4)
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We introduce two other parameters which play a fundamental role for the convergence in the intermediate case:
p0 and m0, defined by

p0 := inf
{

k ≥ 2 | F (2k)(0) > 0
}

and m0 := min {k0, p0} . (2.5)

Theorem 2.4 (Case F ′′(0) + V ′′(0) = 0). Let (εk, k ≥ 0) be a decreasing sequence satisfying limk→∞ εk = 0
and (uεk

, k ≥ 0) a sequence of symmetric invariant measures converging towards u0 = δ0. Then there exists a
subsequence of (εk) (we keep the same notation for simplicity) such that, for any 1 ≤ j ≤ k0, the sequence{

W (2j)
εk

(0)ε
j

m0
−1

k , k ≥ 1
}

converges as k → ∞. We denote by Cj the associated limit. Moreover, for any function f ∈ C4 (R, R) with
polynomial growth, we have the following asymptotic result:

ε
− 1

m0
k

(
〈f, uεk

〉 − 〈f, u0〉
)
−−−−→
k→∞

f ′′(0)
2

∫
R

x2 exp
[
−2

∑k0
j=1

Cj

(2j)!x
2j
]
dx∫

R
exp

[
−2

∑k0
j=1

Cj

(2j)!x
2j
]
dx

· (2.6)

Let us just note that the coefficients Cj appearing in (2.6) shall be specified in Corollary 4.8.
We have just observed different rates of convergence for sequences of symmetric invariant measures depending

on the particular interaction and environment functions F and V . We need now to present convergence rates
associated to non-symmetric stationary measures. For that purpose, we introduce the so-called outlying invariant
measures (see [5]), which are concentrated around δ±a in the small ε limit. Here a and −a represent the locations
of the global minimum of the environment potential V .

In order to study the convergence rate for asymmetric measures, we shall admit the existence of these extremal
outlying stationary measures for ε small enough. In other words, we assume the existence of a sequence of
stationary measures

(
u±

εk

)
k∈N∗ which converges towards δ±a. We will drop the k for notational simplicity. Let

us just note that this main assumption is satisfied in many situations.
Let 2n be the degree of F . According to Theorem 4.6 in [5] and Proposition 4.1 in [6], we know that the

following condition is sufficient in order to ensure this existence:
2n−2∑
p=0

∣∣F (p+2)(a)
∣∣

p!
ap < α + V ′′(a). (2.7)

In other words, under the conditions (UC) and (2.7), the set of limit measures contains at least three measures:
one symmetric and two asymmetric. For these asymmetric measures, we obtain the wished convergence rate ε.
Theorem 2.5 (Asymmetric case). Let (uε, ε > 0) be a sequence of invariant measures converging towards δa.
Let f ∈ C4 (R, R) with polynomial growth. Then

lim
ε→0

1
ε

{
〈f, uε〉 − 〈f, u0〉

}
=

V ′′(a)f ′′(a) − V (3)(a)f ′(a)
4V ′′(a) (α + V ′′(a))

· (2.8)

Obviously the same convergence result holds for δ−a by symmetry.
The study about the convergence rate permits to estimate the moments of the associated stationary measures.

This feature is crucial for the uniqueness problem. Indeed, since F is a polynomial function of degree 2n, the first
2n − 1 moments of an invariant measure characterize completely this measure (see the discussion introducing
Sect. 4.3 in [5]). This essential property shall be used to discuss the uniqueness problem: in fact, we know that,
under simple conditions, there exists several invariant measures for the self-stabilizing process (see [5]). However
we want to precise the statement in order to describe the set of all invariant measures. This set was already
explicitly presented in [5] for particular situations, namely when V ′′ is a convex function and F ′ is linear. Our
aim is to extend this result to more general interaction functions.

We will now assume that the functions F and V satisfy the condition (2.7).
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Theorem 2.6 (Local uniqueness).

1. Let (uε)ε>0 and (vε)ε>0 two families of stationary measures converging towards δa. Then there exists ε0 > 0
such that for all ε < ε0, uε = vε.

2. Let F ′′(0) �= −V ′′(0). There exists a unique symmetric invariant measure for ε small enough.

Let us end the presentation of the main results by a remark. In all the statements, we essentially assume that
the condition (UC) is satisfied in order to make the paper more accessible. In practice, weaker conditions are
sufficient and shall be presented in the proofs.

3. General asymptotic properties related

to the pseudo-potential Wε

In the self-stabilization framework, the convergence rate of sequences of invariant measures in the small-noise
limit is directly related to the asymptotic behavior of the pseudo-potential Wε. Indeed as discussed in Section 2,
stationary measures are in particular exponential forms (2.2). In order to introduce the proofs corresponding
to the theorems of Section 2, we present a general asymptotic estimation which shall play an important role in
the sequel.

As we have already seen, the sequence of invariant measures is assumed to satisfy a weak condition on the
moments, namely the family {μ2n(ε), ε > 0} is bounded. Such a condition implies (see Prop. 3.3 and Thm. 3.6
in [6]) the existence of both a sequence (εk)k≥0 tending towards 0 and a regular function W0 such that:

• W
(j)
εk converges uniformly on each compact subset of R to W

(j)
0 , for any j ∈ N,

• the sequence (uεk
)k≥1 converges weakly towards a discrete probability measure given by u0 :=

∑r
i=1 pi δAi

with pi > 0 and A1, . . . , Ar are locations of the global minimum of W0 defined by (2.3). Since F is an even
function, we have W0(x) = V (x) +

∑r
j=1 pj(F (x − Aj) − F (Aj)).

Attention! In the following we shall drop the index εk just replaced by ε for notational simplicity but the
reader has to keep in mind that both previous properties (uniform convergence of the pseudo-potential and weak
convergence of the measures) are satisfied.

We define A := {Aj ; 1 ≤ j ≤ r} the support of the limit measure u0 and B the set of all locations for W0’s
global minimum which do not belong to A. We introduce s := #B.

Let us consider the set of intervals (Ii)1≤i≤r+s which correspond to the Voronöı cells centered in the elements
of D := A ∪ B. If W ′′

0 (D) > 0 for all D ∈ D, Wε reaches its global minimum at a unique location in Ii denoted
by Dε

i (also denoted by Aε
· or Bε

· ), 1 ≤ i ≤ r + s, which converges to Di ∈ D (Lem. A.5).
In order to begin this asymptotic description, we need to estimate the behavior of Wε(Aε

j) for any j as ε → 0.

Proposition 3.1. We assume that W ′′
ε (D) > 0 for all D ∈ D := A

⋃
B. If Aj and Ak are two elements

of A with the corresponding asymptotic weight: u0(Aj) = pj and u0(Ak) = pk, we denote by Aε
j and Aε

k the
corresponding arg min defined just before. Then the following asymptotic development holds

lim
ε→0

Wε(Aε
j) − Wε(Aε

k)
ε

= −1
4

log
(

W ′′
0 (Aj)

W ′′
0 (Ak)

)
− 1

2
log

(
pj

pk

)
· (3.1)

Moreover, for any B ∈ B �= ∅ we denote Bε the corresponding arg min presented previously and obtain

lim
ε→0

Wε(Bε) − Wε(Aε
j)

ε
= +∞, for all 1 ≤ j ≤ r. (3.2)

Proof. By Theorem 3.6 in [6], the limit measure u0 is a discrete measure constructed as follows u0 =∑r
j=1 pjδAj +

∑s
l=1 qlδBl

where the weights are defined by

pj = lim
ε→0

∫ Aj+δ

Aj−δ

uε(x)dx and ql = lim
ε→0

∫ Bl+δ

Bl−δ

uε(x)dx, 1 ≤ j ≤ r, 1 ≤ l ≤ s.
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The only assumption on δ is that all the intervals [A· − δ, A· + δ] and [B· − δ, B· + δ] are disjoint. By definition
of the set A, pi �= 0 for all 1 ≤ i ≤ r. As an immediate consequence, we obtain for 1 ≤ j, k ≤ r and 1 ≤ l ≤ s:

pj

pk
= lim

ε→0

∫ Aj+δ

Aj−δ
e−

2
ε Wε(x)dx∫ Ak+δ

Ak−δ
e−

2
ε Wε(x)dx

and
ql

pj
= lim

ε→0

∫ Bl+δ

Bl−δ
e−

2
ε Wε(x)dx∫ Aj+δ

Aj−δ
e−

2
ε Wε(x)dx

·

By definition of the set B, the weights (ql)l≥1 vanish. An adaptation of Lemma A.3 to the constant function
f ≡ 1 yields

lim
ε→0

√
πε

W ′′
ε (Aε

j)
e−

2Uε(Aε
j )

ε

√
πε

W ′′
ε (Aε

k) e−
2Uε(Aε

k
)

ε

=
pj

pk
and lim

ε→0

√
πε

W ′′
ε (Bε

l ) e−
2Uε(Bε

l )
ε

√
πε

W ′′
ε (Aε

j)
e−

2Uε(Aε
j
)

ε

= 0.

Applying the function x → − 1
2 log x to the previous equalities permits to prove the asymptotic estimates (3.1)

and (3.2). �

Remark 3.2. Let us first note that the pseudo-potential Wε does not generally reach its global minimum at
each location Aε

j respectively Bε
l , defined in the statement of Lemma A.5, even if each of these points converges

to one location of the global minimum of W0. Equation (3.1) emphasizes that the speed of convergence of
Wε(Aε

j) towards W0(Aj) is directly related to the weight pj. Even if the elements of B do not have any impact
on the limit measure u0, they can influence the convergence’s speed of the sequence of invariant measures uε

for the self-stabilizing diffusion towards u0.

Let us introduce some assumptions in order to avoid the parasitism of B in the computation of the rate
of convergence of any subsequence of invariant measures towards a limit measure u0. In the following, these
conditions are assumed to be satisfied.

Let us recall the definition of D: if w0 := inf
x∈R

W0(x) then D = W−1
0 ({w0}).

Assumption 3.3. For each D ∈ D = A ∪ B, W ′′
0 (D) > 0. Moreover, for any element Aε

j associated with
Aj ∈ A, 1 ≤ j ≤ r, (see Lem. A.5 for the definition of Aε

· ) and Bε
l associated with Bl, 1 ≤ l ≤ s, we set

lim inf
ε→0

Wε(Bε
l ) − Wε(Aε

j)
−ε log(ε)

> 1. (3.3)

This condition is quite natural: it is related to the asymptotic estimate (A.2). In that development appear
either terms induced from elements of A either from elements of B. The condition expressed in (3.3) is interpreted
as follows: the terms associated to B are negligible with respect to those of A of order ε3/2. In other words, we
assume that, for any 1 ≤ j ≤ r and 1 ≤ l ≤ s,√

πε

W ′′
ε (Bε

l )
e−

2Wε(Bε
l )

ε =
√

πε

W ′′
ε (Aε

j)
e−

2Wε(Aε
j)

ε o(ε),

which is equivalent to (3.3).
Example: Let us just introduce an example which satisfies Assumption 3.3. This example was already
pointed out in [6]. The context is as follows: the environment function of the self-stabilizing process satisfies
V (x) := x6

6 − 3
2x4 − 17

32x2 while the interaction function equals F (x) := x4

4 + x2

2 . Two essential results were
already proven (see [6]): first, any family of symmetric invariant measures {uε, ε > 0} satisfies the following
weak convergence result:

lim
ε→0

uε = u0 :=
26
45

δ0 +
19
90

(
δ√

15
2

+ δ−
√

15
2

)
. (3.4)
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We deduce, by the way, the expression of the limit pseudo-potential

W0(x) = V (x) +
26
45

F (x) +
19
90

{
F (x − x0) + F (x + x0) − 2F (x0)

}
,

where x0 =
√

15
2 .

Secondly, due to some convexity property of W
(4)
0 , the global minimum of W0 can only be reached at three

locations, namely A1 = −x0, A2 = 0 and A3 = x0.

• Therefore B = ∅ which implies that it suffices to obtain W ′′
0 (Ai) > 0, for 1 ≤ i ≤ 3, in order to verify

Assumption 3.3. After straightforward computations, we effectively obtain: W ′′
0

(√
15
2

)
= W ′′

0

(
−

√
15
2

)
=

4W ′′
0 (0) = 75

4 > 0.
• In this example, Proposition 3.1 leads to some explicit computation of the first order development of Wε(Aε

1)
where (Aε

1)ε>0 is a sequence of local minimum locations for the potential Wε which converges towards
A1 = −x0 = −

√
15
2 (see Lem. A.5). Let us note that the pseudo-potential Wε associated to the symmetric

invariant measure introduced in (3.4) admits exactly three local minima as ε is small. Indeed D admits three
elements, which implies that Wε admits at least three local minima in the small ε limit as it was proven in
Lemma A.5. Furthermore if Wε admits more than 4 local minima, then W ′

ε vanishes at least seven times. By
Rolle’s theorem this implies that W

(4)
ε , which is a polynomial function of order 2, admits 3 zeros: this is of

course a nonsense. Finally we obtain the existence of exactly three local minima of Wε: Aε
1 < Aε

2 < Aε
3. The

symmetry of uε and consequently of Wε, permits to know that Aε
1 = −Aε

3 and Aε
2 = 0. Finally Proposition 3.1

and Wε(0) = 0 provide

Wε(Aε
1) ≈

ε

2
log

(
1 +

7
19

)
as ε → 0.

The next part of this paper concerns the proofs of the different convergence rates of sequences of invariant
measures for the self-stabilizing process.

4. Rate of convergence: the proofs

This section is devoted to the proofs of Theorems 2.2–2.5. We will in fact provide more than the announced
results in Section 2 by relaxing some of the hypotheses, particularly Assumption (UC).

4.1. Proof of Theorem 2.2

By Lemma A.5, the hypotheses of Theorem 2.2 imply that 0 is the unique location of the global minimum
of Wε and of W0 which is given by W0(x) = V (x) + F (x) according to (2.1). Instead of assuming that V ′′ and
F ′′ are convex, we will suppose that W0 and V ′′ are convex (which is immediate consequence of the convexity
of V ′′ and F ′′).

Let us recall that this situation (V ′′(0) + F ′′(0) > 0) corresponds to the lower-bound W ′′
0 (0) > 0. Since we

assume that W0 is convex, B is empty and finally Assumption 3.3 is satisfied. Applying a Laplace type asymptotic
result, we obtain easily the convergence rate of the sequence of symmetric invariant measures {uε, ε > 0} towards
the limit measure u0 = δ0 as ε → 0.

We recall that uε is characterized by the exponential structure (2.2). Moreover due to the convexity of
W0, B = ∅ and 0 is the unique location of the global minimum of Wε. Therefore, applying the third item of
Lemma A.5 with Aε

1 = 0 and Wε(Aε
1) = 0, we have

∫
R

f(x)e−
2
ε Wε(x)dx =

√
πε

W ′′
ε (0)

{
f(0) + γ0(f)ε + o(ε)

}
,
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where γ0(f) is defined by (A.3). Since W
(3)
0 (0) = V (3)(0) = 0 and W ′′

0 (0) = α + V ′′(0) > 0, γ0(f) converges
towards

γ(f) := − W
(4)
0 (0)

16W ′′
0 (0)2

f(0) +
f ′′(0)

4W ′′
0 (0)

· (4.1)

Hence ∫
R

f(x) exp
[
−2

ε
Wε(x)

]
dx =

√
πε

W ′′
ε (0)

{
f(0) + γ(f)ε + o(ε)

}
. (4.2)

First we apply (4.2) to the constant function f ≡ 1 and obtain∫
R

exp
[
−2

ε
Wε(x)

]
dx =

√
πε

W ′′
ε (0)

{
1 + γ(1)ε + o(ε)

}
. (4.3)

Here γ(1) = − W
(4)
0 (0)

16W ′′
0 (0)2 . Let f ∈ C4 (R, R) with polynomial growth. We divide (4.2) by (4.3), the following

estimate yields ∫
R

f(x)uε(x)dx =
f(0) + γ(f)ε + o(ε)

1 + γ(1)ε + o(ε)
= f(0) +

(
γ(f) − f(0)γ(1)

)
ε + o(ε),

where γ(f) is defined by (4.1). Finally the following estimate holds:

〈f, uε〉 − 〈f, u0〉
ε

= γ(f) − f(0)γ(1) + o(1) =
f ′′(0)

4W ′′
0 (0)

+ o(1).

In order to complete the proof, it suffices to note that W ′′
0 (0) = α + V ′′(0).

4.2. Proof of Theorem 2.3

Now, we focus our attention to the case: V ′′(0)+F ′′(0) < 0. In [6], the authors describe, in the self-stabilization
framework and under suitable conditions (the convexity of both F ′′ and V ′′), the whole set of limit measures for
sequences of symmetric invariant measures. In the previous paragraph, we focus our attention to the convergence
rate when u0 = δ0 and V ′′(0) + F ′′(0) > 0. Here, we are interested by other functions V and F which permit
to deal with the following discrete limit measure: u0 = 1

2δx0 + 1
2δ−x0 .

According to Proposition 5.3 in [6], any limit measure associated to symmetric invariant measures and which
support is reduced to the set {−x0, x0} with x0 > 0, satisfies the following properties:{

V ′(x0) + 1
2F ′(2x0) = 0,

V ′′(x0) + α
2 + 1

2F ′′(2x0) ≥ 0.
(4.4)

Furthermore the support satisfies x0 ≤ a, where a was introduced in (V-3). The material is organized as
previously: starting with the convergence of the pseudo-potential Wε, defined by (2.1), towards W0, given by

W0(x) := V (x) +
1
2
F (x − x0) +

1
2
F (x + x0) − F (x0),

we analyze the asymptotic behavior of the minimum locations and deduce the expected rate.
Let us stress that in (4.4), nothing ensures that the inequality is strict. Nevertheless, in the following, we need

to assume W ′′
0 (x0) > 0 that is to say V ′′(x0) + 1

2F ′′(0) + 1
2F ′′(2x0) > 0. Such hypothesis is less restrictive than

(UC). Let us prove this statement.

Lemma 4.1. Under (UC), the global minimum of W0 is reached exactly at two points: x0 and −x0. Besides,
W ′′

0 (x0) > 0.
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Proof. Since V ′′ and F ′′ are convex functions, Theorem 5.4 of [6] ensures the uniqueness of x0. If we assume
that W ′′

0 (x0) = 0 then W
(3)
0 (x0) = 0, W0 reaching a local minimum for x = x0. However, the convexity property

of W ′′
0 implies that W

(3)
0 is non-decreasing. Since W

(3)
0 (0) = 0 due to the symmetry of W0, we deduce that

W
(3)
0 (x) = 0, for all x ∈ [0, x0]. Hence W ′′

0 (0) = W ′′
0 (x0) which is of course a nonsense since W ′′

0 (x0) = 0 and
W ′′

0 (0) = α − θ < 0. Indeed, θ := supx∈R −V ′′(x) = −V ′′(0) since V ′′ is a convex function. �

As a consequence, we obtain that the set B defined in Section 3 is empty. From now on, we shall just assume
that W ′′

0 (x0) > 0 and allow B not to be empty. Lemma A.5 permits to obtain directly the following asymptotic
behavior: for ε small enough, there exists a unique xε

0 in the neighborhood V of x0 such that Wε defined by (2.1)
reaches its global minimum on V for x = xε

0. Moreover we have the following convergence: since W ′′
0 (x0) > 0,

xε
0 converges towards x0 and

xε
0 = x0 −

W ′
ε(x0)

W ′′
0 (x0)

+ o {W ′
ε(x0)} . (4.5)

This convergence can even be more precise.

Theorem 4.2. If W ′′
0 (x0) > 0, under the condition (3.3), we get

lim
ε→0

xε
0 − x0

ε
=

W
(3)
0 (x0) (F ′′(2x0) − α) − F (3)(2x0)W ′′

0 (x0)
8W ′′

0 (x0)2 (V ′′(x0) + F ′′(2x0))
·

The proof of Theorem 4.2 is essentially based on two lemmas: Lemmas 4.3 and 4.4. The first one deals with
an integral estimate in the spirit of (A.2) and permits to prove the second one which describes the asymptotic
behavior of the following expression W ′

ε(x0)/ε. It suffices then to consider (4.5) in order to finish the proof. The
details are left to the reader.

Lemma 4.3. Let us assume (3.3). For any function f ∈ C4 (R, R) with polynomial growth, the following esti-
mate holds: ∫

R

f(x)e−
2
ε Wε(x)dx = 2

√
πε

W ′′
ε (xε

0)
e−

2Wε(xε
0)

ε

{
f+(xε

0) + γ(f)ε + o(ε)
}

(4.6)

where

γ(f) :=
(

5 W2
3

48 W3
2

− W4

16 W2
2

)
f+(x0) −

W3

4 W2
2

f ′
+(x0) +

f ′′
+(x0)
4 W2

·

Here Wk := W
(k)
0 (x0) and f+(x) := (f(x) + f(−x))/2.

Proof. We recall that Lemma A.5 provides directly the existence of ±xε
0. Moreover (A.2) combined with

Assumption 3.3 permits to obtain (see the comments following Assump. 3.3):

∫
R

f(t)e
−2Wε(t)

ε dt = 2
√

πε

W ′′
ε (xε

0)
e−

2Wε(xε
0)

ε

{
f+(xε

0) +
γ+(f) + γ−(f)

2
ε + o(ε)

}

with γ±(f) := f(±x0)

(
5 W2

3,ε

48 W3
2,ε

− W4,ε

16 W2
2,ε

)
− f ′(±x0)

±W3,ε

4 W2
2,ε

+
f ′′(±x0)
4 W2,ε

and Wk,ε := W
(k)
ε (xε

0). In order to

prove (4.6), it suffices to note that xε
0 converges towards x0 and that W

(k)
ε converges uniformly towards W

(k)
0

(see Sect. 3) as ε → 0. �

Lemma 4.4. Let W ′′
0 (x0) > 0. Under the condition (3.3), we have:

lim
ε→0

W ′
ε(x0)
ε

=
F (3)(2x0)W ′′

0 (x0) − W
(3)
0 (x0) (F ′′(2x0) − α)

8W ′′
0 (x0) (V ′′(x0) + F ′′(2x0))

· (4.7)
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Proof. Since x0 is the location of a local extremum for W0, W ′
0(x0) = 0. Hence, defining ξ(z) := F ′(x0 − z), we

get

W ′
ε(x0) = W ′

ε(x0) − W ′
0(x0) =

∫
R

ξ(z)uε(z)dz − 1
2

(
ξ(x0) + ξ(−x0)

)

=

∫
R

ξ(z) exp
[
− 2

ε Wε(z)
]
dz∫

R
exp

[
− 2

ε Wε(z)
]
dz

− ξ+(x0).

By Lemma 4.3 the following estimates hold:∫
R

ξ(x)e−
2
ε Wε(x)dx = 2

√
πε

W ′′
ε (xε

0)
e−

2Wε(xε
0)

ε

{
ξ+(xε

0) + γ(ξ)ε + o(ε)
}

(4.8)∫
R

e−
2
ε Wε(x)dx = 2

√
πε

W ′′
ε (xε

0)
e−

2Wε(xε
0)

ε

{
1 + γ(1)ε + o(ε)

}
. (4.9)

Let us divide (4.8) by (4.9). Therefore∫
R

ξ(x)uε(x)dx = ξ+(xε
0) +

(
γ(ξ) − ξ+(xε

0)γ(1)
)
ε + o(ε).

The definition of γ leads to:
∫

R

ξ(x)uε(x)dx = ξ+(xε
0) +

(
− W3

4 W2
2

ξ′+(x0) +
ξ′′+(x0)
4 W2

)
ε + o(ε). (4.10)

Therefore, we have

lim
ε→0

W ′
ε(x0)
ε

{
1 − ξ+(xε

0) − ξ+(x0)
xε

0 − x0

xε
0 − x0

W ′
ε(x0)

}
= − W3

4 W2
2

ξ′+(x0) +
ξ′′+(x0)
4 W2

·

By (4.5), we get

lim
ε→0

W ′
ε(x0)
ε

{
1 +

ξ′+(x0)
W ′′

0 (x0)

}
= − W3

4 W2
2

ξ′+(x0) +
ξ′′+(x0)
4 W2

· (4.11)

Since W3 = W
(3)
0 (x0) = V (3)(x0) + F (3)(x0)/2 and W2 = W ′′

0 (x0) = V ′′(x0) + α
2 + F ′′(2x0)

2 , the announced
limit (4.7) is proved. �

Finally we can obtain the desired result concerning the convergence rate that is to say Theorem 2.3.

Proof. Since u0 = 1
2δx0 + 1

2δ−x0 , the difference 〈f, uε〉 − 〈f, u0〉 equals∫
R

f(x)uε(x)dx − f+(x0) where f+(x) =
1
2

(
f(x) + f(−x)

)
.

Applying Lemma 4.3 to the functions f and 1, we obtain the estimate of the ratio. Hence
∫

R

f(x)uε(x)dx = f+(xε
0) +

(
− W3

4 W2
2

f ′
+(x0) +

f ′′
+(x0)
4 W2

)
ε + o(ε).

Therefore, defining

T := lim
ε→0

{
〈f, uε〉 − 〈f, u0〉

ε
− f+(xε

0) − f+(x0)
xε

0 − x0

xε
0 − x0

W ′
ε(x0)

W ′
ε(x0)
ε

}
,
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we get T =
f ′′
+(x0)

4W ′′
0 (x0)

−
W3f

′
+(x0)

4 W2
2

. Obviously lim
ε→0

f+(xε
0) − f+(x0)
xε

0 − x0
= f ′

+(x0), (4.5) implies limε→0(xε
0 −

x0)/W ′
ε(x0) = −1/W ′′

0 (x0) and limε→0 W ′
ε(x0)/ε is determined by Lemma 4.4. Hence

lim
ε→0

〈f, uε〉 − 〈f, u0〉
ε

=
f ′′
+(x0)

4W ′′
0 (x0)

+ f ′
+(x0)Δ(x0),

with

Δ(x0) :=
W

(3)
0 (x0) (F ′′(2x0) − α) − F (3)(2x0)W ′′

0 (x0)
8W ′′

0 (x0)2 (V ′′(x0) + F ′′(2x0))
− W3

4 W2
2

= − 2W
(3)
0 (x0) + F (3)(2x0)

8W ′′
0 (x0) (V ′′(x0) + F ′′(2x0))

·

The proof is achieved since W
(3)
0 (x0) = V (3)(x0) + 1

2F (3)(2x0). �

4.3. Proof of Theorem 2.4

We come back to the case where the limit value is u0 = δ0. But, we assume V ′′(0) + F ′′(0) = 0 instead of
V ′′(0) + F ′′(0) > 0. Since W0 = V + F and F ′′ are convex, 0 is the unique location of the global minimum of
W0. But, in this situation, we have W ′′

0 (0) = 0. In other words, Assumption 3.3 is not satisfied. The aim of this
paragraph is to emphasize that the convergence rate is not always equal to ε. This rate was effectively presented
in Sections 4.1 and 4.2 and concerns most of the situations. The condition W ′′

0 (0) = 0 changes drastically the
asymptotic behavior of the self-stabilizing invariant measure. The asymptotic results shall be proved under
weaker conditions than those presented in Theorem 2.4. Indeed, instead of assuming (UC), we start with the
convexity of both functions W0 and F ′′. The computation of convergence rate will be based on successive
derivations of the pseudo-potential: W

(2k)
ε (0). We therefore recall and introduce:

k0 := min
{
k ≥ 2 | W

(2k)
0 (0) > 0

}
,

Ωε := max
1≤j≤k0

{∣∣∣W (2j)
ε (0)

∣∣∣ 1
2j

ε−
1
2j

}
(4.12)

and M2r(ε) :=
∫

R

x2r exp
[
−2

ε
Wε(x)

]
dx. (4.13)

The expression Ωε corresponds in fact to the suitable change of variable associated with the computation of
M2r(ε). This result is detailed in the following proposition. Let us just note that M2r(ε) is well-defined. Indeed
since uε is a symmetric invariant measure, Lemma 4.2 in [5] implies the following lower bound:∫ x

0

(F ′ ∗ uε)(y)dy ≥ 0.

It suffices then to use (2.1) and the growth property of V in order to prove the boundedness of the integrals
M2r(ε), for ε > 0 and r ∈ N.

Proposition 4.5. If W0 and F ′′ are convex, for all r ∈ N, the following inequalities hold:

0 < lim inf
ε→0

Ω2r+1
ε M2r(ε) < lim sup

ε→0
Ω2r+1

ε M2r(ε) < +∞. (4.14)

Proof.
Step 1. Preliminaries. Since {uε, ε > 0} is a sequence of symmetric invariant measures with uniformly
bounded 2nth moments, W

(2r)
ε converges uniformly on each compact set to W

(2r)
0 (see the discussion before
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Lem. A.5 and the statement of Prop. 3.3 in [6]). The definition of k0 implies therefore: |W (2k0)
ε (0)|

1
2k0 ε−

1
2k0 →

+∞ as ε → 0. Consequently, Ωε → +∞.
Let Cj(ε) := W (2j)

ε (0)

εΩ2j
ε

. By construction, the families {Cj(ε)}ε>0 are bounded.
Let us select a decreasing subsequence (εk)k∈N

converging towards 0 such that, for any 1 ≤ j ≤ k0, we observe
Cj(εk) → Cj ∈ R.

In order to simplify the notations, we drop the index.
We define

J :=
{

j
∣∣∣ 1 ≤ j ≤ k0, Cj �= 0

}
=
{

j1, . . . , jl

}
(4.15)

with 1 ≤ j1 < j2 < · · · < jl ≤ k0.
Let us now focus our attention to the computation of the integral term M2r(ε) which can be split into two

principal terms as follows:

M2r(ε)
2

= I2r(ε) + J2r(ε) :=
∫ η(ε)

0

x2re−
2Wε(x)

ε dx +
∫ +∞

η(ε)

x2re−
2Wε(x)

ε dx, (4.16)

η(ε) shall be specified in the following.

Step 2. Asymptotic analysis of I2r(ε). The mean value theorem applied to the function Wε on [0; η(ε)]
leads to:

Wε(x)
ε

=
1
ε

k0∑
j=1

1
(2j)!

W (2j)
ε (0)x2j +

W
(2k0+2)
ε (yx)

(2k0 + 2)! ε
x2k0+2,

with yx ∈ [0; η(ε)]. Using the definition and the convergence result related to Cj(ε), we get:

Wε(x)
ε

=
l∑

k=1

Cjk

(2jk)!
Ω2jk

ε x2jk +
W

(2k0+2)
ε (yx)

(2k0 + 2)! ε
x2k0+2

+
k0∑

j=1

1
(2j)!

sgn (Cj(ε) − Cj)
(
|Cj(ε) − Cj |

1
2j

)2j

Ω2j
ε x2j . (4.17)

We shall find a suitable sequence {η(ε), ε > 0} (subsequence since the index was dropped), decreasing to-
ward 0 and such that the first sum in the rhs of the previous expression is the principal term, all the others
being negligible. For ε small enough and for all x ∈ [0; η (ε)], the second term is upper bounded by:

1
ε

∣∣∣W (2k0+2)
ε (yx)

∣∣∣ x2k0+2 ≤ sup
z∈[0;1]

∣∣∣W (2k0+2)
ε (z)

∣∣∣ η (ε)2k0+2
ε−1.

Let us now introduce the parameter Ωε which tends to 0 in the small ε limit and which is defined by:

Ωε := max

{
sup

1≤j≤k0

|Cj(ε) − Cj |
1
2j ;

1
Ωε

; ε
1

2k0(2k0+2)

}
.

Ωε is a good candidate for the construction of η(ε); we set

η (ε) := Ω−1
ε

(
Ωε

)− 1
2 . (4.18)
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Some straightforward considerations permit to observe that:

• Firstly, η (ε) tends to 0 as ε becomes small.
• Secondly, there exists ρ(ε) > 0, satisfying limε→0 ρ(ε) = 0, such that, for all x ∈ [0; η(ε)],∣∣∣W (2k0+2)

ε (yx)
∣∣∣

ε (2k0 + 2)!
x2k0+2 +

k0∑
j=1

(
|Cj(ε) − Cj |

1
2j

)2j

(2j)!
Ω2j

ε x2j < ρ(ε). (4.19)

Due to the suitable choice of the parameter η(ε), see (4.18), the integral I2r(ε) defined by (4.16) is equivalent
to the simpler integral ∫ η(ε)

0

x2r exp

[
−2

(
l∑

k=1

Cjk

(2jk)!
Ω2jk

ε x2jk

)]
dx,

in the small ε limit. The change of variable x := Ω−1
ε y provides

I2r(ε) ≈ Ω−2r−1
ε

∫ ϕ(ε)

0

y2r exp

[
−2

l∑
k=1

Cjk

(2jk)!
y2jk

]
dy, as ε → 0, (4.20)

where ϕ(ε) := η (ε)Ωε =
(
Ωε

)− 1
2 → +∞ as ε → 0. By definition Cjl

�= 0, see (4.15). If Cjl
> 0, then

Γr :=
∫

R+ x2r exp
[
−2

∑l
k=1

1
(2jk)!Cjk

x2jk

]
dx < ∞ and therefore, in the small ε limit, (4.20) leads to

I2r(ε) ≈ Ω−2r−1
ε Γr.

To conclude the asymptotic analysis of I2r(ε), it remains to prove that Cjl
> 0. We shall prove it by reductio

ad absurdum. Let us then assume that Cjl
< 0 which implies limy→+∞

∑l
k=1

Cjk

(2jk)! y2jk = −∞. Hence there

exists y0 > 0 such that
∑l

k=1

Cjk

(2jk)! y2jk

0 ≤ −1. Due to the convergence of
Wε(Ω−1

ε y)
ε towards

∑l
k=1

Cjk

(2jk)! y2jk

for any y ∈ R, we deduce that Wε

(
Ω−1

ε y0

)
< 0 for ε small enough. This contradicts the fact that 0 is the global

minimum of Wε in a neighborhood of 0, for ε small enough (see Lem. A.5).
Step 3. Asymptotic analysis of J2r(ε). It is now sufficient to prove that J2r(ε) defined in (4.16) satisfies
J2r(ε) = o(I2r(ε)) = o

{
Ω−2r−1

ε

}
. We split this integral into three different parts depending on the support:

J	
2r(ε) for the support [η(ε), ελ[, J◦

2r(ε) for [ελ, ε−μ[ and finally JΔ
2r(ε) for [ε−μ, +∞[ where λ, μ > 0 shall be

specified in the following.

3.1. Let us first estimate JΔ
2r(ε). Due to the assumptions (F-2) and (V-4), we get the lower bound Wε(x) ≥

W0(x) ≥ C4x
4 −C2x

2 ≥ x2

2 for large x. The first inequality in the previous formula is also related to the second
item in the proof of Lemma A.5. We apply the change of variable x :=

√
εy, Lemma A.1 leads to:

JΔ
2r(ε) ≤ εr+ 1

2

∫ ∞

ε−μ− 1
2

y2re−y2
dy ≤ 2ε1+(1−2r)μ exp

[
−ε−2μ−1

]
,

for ε small enough. It remains to prove that the rhs is negligible with respect to Ω−2r−1
ε . It suffices in fact to

note that, by definition of Ωε, the following convergence result holds: εΩε → 0 as ε → 0. Consequently, since
μ > 0,

Ω2r+1
ε ε1+(1−2r)μ exp

[
−ε−2μ−1

]
→ 0.

3.2. Secondly we estimate J◦
2r(ε). We obtain:

J◦
2r(ε) =

∫ ε−μ

ελ

x2r exp
[
−2

ε
Wε(x)

]
dx ≤ ε−μ(2r+1) exp

[
−2

ε
inf

z∈[ελ;+∞[
Wε(z)

]
.



STATIONARY MEASURES FOR SELF-STABILIZING PROCESSES 291

We note that 0 is the unique location of the global minimum for the pseudo-potential W0 which implies that
infz∈[ελ;+∞[ Wε(z) = Wε

(
ελ
)
≥ W0

(
ελ
)
, for ε small enough. The mean value theorem provides W0

(
ελ
)
≈

W
(2k0)
0 (0)

(2k0)! ε2k0λ.
Taking λ = 1

2k0+1 and μ > 0, J◦
2r(ε) is exponentially small in ε. By definition,

√
ε = o

{
Ω−1

ε

}
. Hence J◦

2r(ε)
is negligible.

3.3. We focus now our attention on the integral J	
2r(ε) related to the support [η(ε), ελ[ where η(ε) defined

by (4.18) tends to 0 as ε becomes small. The change of variable x := Ω−1
ε y yields

J	
2r(ε) = Ω−2r−1

ε

∫ b(ε)

a(ε)

y2r exp
[
− 2

ε
Wε(Ω−1

ε y)
]
dy, (4.21)

where a(ε) := η(ε)Ωε → +∞ and b(ε) := ελΩε. Let us just prove that the integral introduced in (4.21) is
negligible, that is tends to 0 in the small ε limit.

An integration by parts permits to obtain:

J	
2r(ε)Ω

2r+1
ε =

a(ε)2r exp
[
− 2

ε Wε(Ω−1
ε a(ε))

]
2

εΩε
W ′

ε(Ω
−1
ε a(ε)) − 2r

a(ε)

−
b(ε)2r exp

[
− 2

ε Wε(Ω−1
ε b(ε))

]
2

εΩε
W ′

ε(Ω
−1
ε b(ε)) − 2r

b(ε)

−
∫ b(ε)

a(ε)

y2r

2
εΩ2

ε
W ′′

ε (Ω−1
ε y) + 2r

y2(
2

εΩε
W ′

ε(Ω
−1
ε y) − 2r

y

)2 exp
[
−2

ε
Wε(Ω−1

ε y)
]

dy.

Since F ′′ is a convex function, we obtain

W ′′
ε (x) − W ′′

0 (x) =
∫

R+

(
F ′′(x + z) + F ′′(x − z) − 2F ′′(x)

)
uε(z)dz ≥ 0. (4.22)

The main assumption in this section is W ′′
0 (0) = 0. Moreover, since 0 is the unique global minimum location of

the limit pseudo-potential W0, there exists a constant η > 0 such that W ′′
0 (x) ≥ 0 on the interval ] − η, η[ and

so, due to (4.22), W ′′
ε (Ω−1

ε y) ≥ 0 for y ∈ [a(ε), b(ε)]. Hence

J	
2r(ε)Ω

2r+1
ε ≤ a(ε)2re−

2
ε Wε(Ω

−1
ε a(ε))

2
εΩε

W ′
ε(Ω

−1
ε a(ε)) − 2r

a(ε)

− b(ε)2re−
2
ε Wε(Ω

−1
ε b(ε))

2
εΩε

W ′
ε(Ω

−1
ε b(ε)) − 2r

b(ε)

· (4.23)

Moreover since the application y → W ′
ε(Ω−1

ε y) is non decreasing on the interval [a(ε), b(ε)], we get

2
εΩε

W ′
ε

(
Ω−1

ε b(ε)
)
− 2r

b(ε)
≥ 2

εΩε
W ′

ε

(
Ω−1

ε a(ε)
)
− 2r

a(ε)
· (4.24)

Let us prove now that the r.h.s. is positive for ε small enough. The mean value theorem leads to a similar
development as (4.17) namely

W ′
ε(x)

εΩε
=

l∑
k=1

Cjk

(2jk − 1)!
Ω2jk−1

ε x2jk−1 +
W

(2k0+2)
ε (yx)

(2k0 + 1)! εΩε
x2k0+1

+
k0∑

j=1

1
(2j − 1)!

sgn (Cj(ε) − Cj)
(
|Cj(ε) − Cj |

1
2j

)2j

Ω2j−1
ε x2j−1,

with yx ∈ [0, x]. In particular, for x = Ω−1
ε a(ε) = ηε, similar arguments as those used in (4.19) permit the

existence of a function ρ(ε) > 0 satisfying limε→0 ρ(ε) = 0, such that∣∣∣W (2k0+2)
ε (yx)

∣∣∣
εΩε (2k0 + 1)!

η(ε)2k0+1 +
k0∑

j=1

(
|Cj(ε) − Cj |

1
2j

)2j

(2j − 1)!
Ω2j−1

ε η(ε)2j−1 < ρ(ε).
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We deduce that W ′
ε(Ω−1

ε a(ε))
εΩε

is close to P (ε) :=
∑l

k=1

Cjk

(2jk−1)! a(ε)2jk−1: for any δ > 0 small enough, there exists
ε0 > 0, such that ∣∣∣∣W ′

ε(Ω
−1
ε a(ε))

εΩε
− P (ε)

∣∣∣∣ ≤ δ, ∀ε ≤ ε0.

Let us recall that a(ε) → ∞ as ε → 0. Furthermore, in Step 2 we have proved that Cjl
> 0. Therefore, as ε → 0,

P (ε) → ∞ and so do W ′
ε(Ω−1

ε a(ε))
εΩε

. Finally we deduce that the rhs of (4.24) is lower-bounded: for any δ > 0 there
exists ε0 such that

2
εΩε

W ′
ε(Ω

−1
ε a(ε)) − 2r

a(ε)
≥ 1

δ
, ∀ε ≤ ε0. (4.25)

By (4.25), (4.24) and (4.23), there exists δ > 0 such that the following upper bound yields in the small ε limit:

J	
2r(ε)Ω

2r+1
ε ≤ a(ε)2re−

2
ε Wε(Ω

−1
ε a(ε))

2
εΩε

W ′
ε(Ω

−1
ε a(ε)) − 2r

a(ε)

≤ δa(ε)2re−
2
ε Wε(Ω

−1
ε a(ε)). (4.26)

Let us prove now that the previous upper-bound becomes small as ε → 0 which implies immediately the required
asymptotic result: J	

2r(ε) = o(Ω−2r−1
ε ).

It suffices in fact to get an estimate of Wε(Ω−1
ε a(ε))/ε. The procedure requires the arguments just used for

the asymptotic estimation of the expression W ′
ε(Ω−1

ε a(ε))ε−1Ω−1
ε . Indeed for any δ > 0 there exists ε0 > 0 such

that ∣∣∣∣1ε Wε(Ω−1
ε a(ε)) − Q(ε)

∣∣∣∣ ≤ δ, ε ≤ ε0, (4.27)

with Q(ε) :=
∑l

k=1

Cjk

(2jk)! a(ε)2jk . Since Cjl
> 0, the following limit holds limε→0 Q(ε) = +∞ and therefore (4.27)

leads to 1
ε Wε(Ω−1

ε a(ε)) ≥ Cjl

2(2jl)!
a(ε)2jl for ε small enough. By (4.26), we finally get

0 ≤ J	
2r(ε)Ω

2r+1
ε ≤ δa(ε)2r exp

[
− Cjl

(2jl)!
a(ε)2jl

]
.

Since a(ε) → ∞ as ε → 0, the rhs in the preceding inequality tends to 0 and J	
2r(ε) = o(Ω−2r−1

ε ).

Step 4. Conclusion. In the first step, we have decomposed the moment M2r(ε) (for a subsequence (εk)k∈N
)

into two parts: I2r(ε) studied in the second step and J2r(ε) studied in the third step. We have proved that J2r(ε)
is negligible with respect to I2r(ε). Hence the following asymptotic estimate holds

M2r(ε) = Ω−2r−1
ε

∫
R

x2r exp

[
−2

l∑
k=1

1
(2jk)!

Cjk
x2jk

]
dx + o

{
Ω−2r−1

ε

}
(4.28)

where the coefficients Cj depend on the sequence ε = (εk)k∈N
.

In order to achieve the proof, we analyze, not only for one subsequence, the following expressions:
lim infε→0 Ω2r+1

ε M2r(ε) and lim supε→0 Ω2r+1
ε M2r(ε) and prove (4.14) by reductio ad absurdum. If we assume

that the lim sup is unbounded, then there exists a sequence (εk)k≥0 which tends to 0 and such that

lim
k→∞

Ω2r+1
εk

M2r(εk) = +∞.

Applying Step 1, we extract a subsequence (ε′k)k≥0 such that Cj(ε′k) → Cj as k → ∞ for all 1 ≤ j ≤ k0. For
this subsequence we have already proved, see (4.28), that Ω2r+1

ε′k
M2r(ε′k) is bounded. We obtain the announced

contradiction and therefore lim supε→0 Ω2r+1
ε M2r(ε) < ∞. The same argument is used to obtain the lower-

bound. �
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According to Proposition 4.5, we observe that Ωε defined by (4.12) is essential in the description of the asymptotic
estimation of M2r(ε), defined by

M2r(ε) =
∫

R

x2r exp
[
−2

ε
Wε(x)

]
dx.

In particular M0(ε), corresponding to the normalization term for the invariant measure uε, see (2.2), converges
towards 0 with the rate Ω−1

ε .
We recall the expression of the limit pseudo-potential introduced by (2.1): W0(x) = V (x) + F (x) and the

related parameter
k0 = min

{
k ≥ 2 | W

(2k)
0 (0) > 0

}
.

The aim is now to prove that the convergence rate of sequences {M2r(εk), k ≥ 0} is related to ε
(2r+1)/(2m0)
k .

First of all, we present the following asymptotic result:

Proposition 4.6. If F ′′ and W0 are both convex functions, the following inequalities yield:

0 < lim inf
ε→0

Ωεε
1

2m0 < lim sup
ε→0

Ωεε
1

2m0 < +∞. (4.29)

Proof. By definition of the parameter k0, we have

W (2j)
ε (0) =

∫
R

(
F (2j)(x) − F (2j)(0)

)
uε(x)dx, 1 ≤ j ≤ k0 − 1.

Since F is a polynomial function of degree 2n,

W (2j)
ε (0) =

n−j∑
r=1

F (2r+2j)(0)
(2r)!

M2r(ε)
M0(ε)

·

For any 1 ≤ j ≤ n − 1, we define s(j) := inf
{
r ≥ 1 | F (2j+2r)(0) �= 0

}
. Applying Proposition 4.5 with

1 ≤ r ≤ k0 −1, there exists a decreasing sequence (εk)k≥0 such that Cj(εk) =
W (2j)

εk
(0)

εkΩ2j
εk

converges towards a limit

denoted by Cj , as k → ∞, for all 1 ≤ j ≤ k0. Moreover, by (4.28), we obtain

W (2j)
εk

(0) =
F (2j+2s(j))(0)

(2s(j))!
αs(j) Ω−2s(j)

εk
(1 + o(1)) as k → ∞ (4.30)

with αr =

∫
R+ x2r exp

[
−2

∑l
p=1

Cjp

(2jp)!x
2jp

]
dx∫

R+ exp
[
−2

∑l
p=1

Cjp

(2jp)!x
2jp

]
dx

· (4.31)

The set of indexes J = {jk, 1 ≤ k ≤ l} is defined by (4.15).
We distinguish two different cases:

First case: p0 > k0. By definition of the coefficient Cj(εk) and using (4.30), we obtain the following asymptotic
result:

Cj(εk) =
W

(2j)
εk (0)
εkΩ2j

εk

=
F (2j+2s(j))(0)

(2s(j))!
αs(j)

εkΩ
2(j+s(j))
εk

+ o
(
ε−1
k Ω−2(j+s(j))

εk

)
.

Since j ≥ 1 and s(j) ≥ 1, we get j + s(j) ≥ 2. Using the definition of s(j), we obtain F (2j+2s(j))(0) �= 0 which

implies j + s(j) ≥ p0. Furthermore (4.12) yields Ωεk
≥ W

(2k0)
εk (0)

1
2k0 ε

− 1
2k0

k . Therefore the following lower-bound
holds

εkΩ2(j+s(j))
εk

≥
(
W (2k0)

εk
(0)

1
2k0

)2(j+s(j))

ε
1− p0

k0
k .
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The rhs of the preceding inequality becomes infinite as k → ∞. This is due to the definition of k0, see (2.4),
and the inequality p0 > k0. Hence, for any 1 ≤ j ≤ k0 − 1, the sequence Cj(εk) tends to 0 as k → ∞. In other
words the set J is a singleton: J = {k0}. Finally for k large enough, we get

Ωεk
= W (2k0)

εk
(0)

1
2k0 ε

− 1
2k0

k = W (2k0)
εk

(0)
1

2k0 ε
− 1

2m0
k .

Second case: p0 ≤ k0. For all j ≤ k0 − 1, (4.30) implies the following asymptotic estimation:

Ωεk
≥
∣∣∣W (2j)

εk
(0)

∣∣∣ 1
2j

ε
− 1

2j

k ≈
∣∣∣∣F (2j+2s(j))(0)

(2s(j))!
αs(j)

∣∣∣∣
1
2j

Ω
− s(j)

j
εk ε

− 1
2j

k = KjΩ
− s(j)

j
εk ε

− 1
2j

k ,

where Kj is a constant. Hence, for k large enough, Ωεk
ε

1
2(j+s(j))

k ≥ K ′
j. In particular, for j = p0 − 1, we have

Ωεk
≥ Cε

− 1
2p0

k . (4.32)

Hence there exists a constant C′ > 0 such that, for any 1 ≤ j ≤ k0 − 1,

Ω
− s(j)

j
εk ε

− 1
2j

k ≤ C′ε
−p0−s(j)

2jp0
k ≤ C′ε

− 1
2p0

k .

Therefore, for all 1 ≤ j ≤ k0 − 1, there exists a constant C′′ > 0 such that

∣∣∣W (2j)
εk

(0)
∣∣∣ 1
2j

ε
− 1

2j

k ≤ C′′ε
− 1

2p0
k , for k large enough.

In order to conclude it suffices to use the definition of Ωεk
, see (4.12). The term of highest degree in the

construction of Ωεk
is |W (2k0)

εk (0)|
1

2k0 ε
− 1

2k0
k which is of order ε

− 1
2k0

k = O(ε
− 1

2p0
k ), since p0 ≤ k0. The others

components satisfy

sup
1≤j≤k0−1

{∣∣∣W (2j)
εk

(0)
∣∣∣ 1
2j

ε
− 1

2j

k

}
≤ C′ε

− 1
2p0

k .

These upper-bounds combined with (4.32) permit to prove the boundedness of the sequence {Ωεk
/ε

1
2p0
k , k ≥

1} = {Ωεk
/ε

1
2m0
k , k ≥ 1}.

The result announced in (4.29) is a straightforward consequence of the convergence rates proved on sub-
sequences. Indeed it suffices to adopt similar arguments as those developed in the proof of Proposition 4.5
(Step 4). �

Remark 4.7. In the proof of Proposition 4.5, the boundedness of the family
(
Cj(ε) = W (2j)

ε (0)

ε(Ωε)
2j , ε > 0

)
for

all 1 ≤ j ≤ k0 and the asymptotic result lim infε→0 sup1≤j≤k0
|Cj(ε)| > 0 were the main starting arguments.

Furthermore the inequalities presented in (4.29) imply that C′
j(ε) := W

(2j)
ε (0)ε

j
m0

−1 satisfies these properties
too. Therefore, in the following, we shall consider C′

j(ε) and its possible limit C′
j instead of Cj(ε) and Cj . In

order to simplify the notations, we shall continue to write Cj(ε) and Cj .

Using the preceding results concerning the asymptotic behavior of the moments M2r(ε) as ε → 0, we shall
now focus our attention to the convergence rate of the expression 〈f, uε〉 towards 〈f, u0〉 for general functions f
and we will obtain Theorem 2.4.
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Proof of Theorem 2.4. Let us introduce the function f+(x) := 1
2 (f(x) + f(−x)). Therefore we obtain 〈f, uεk

〉 −
〈f, u0〉 = 2

∫
R+ (f+(x) − f+(0))uεk

(x)dx. Applying the mean value theorem to f+, there exists a function
x → yx ∈ [0, x], such that∫

R+

(
f+(x) − f(0)

)
uεk

(x)dx =
f ′′(0)M2(εk)

4 M0(εk)
+

1
24

∫
R+

f
(4)
+ (yx)x4uεk

(x)dx.

The integral term in the rhs can be upper-bounded by a finite combination of moments M2r(εk)
M0(εk) , with r ≥ 2, since

yx ∈ [0; x] and since f+ is of polynomial growth. Taking into account Remark 4.7, we adapt Proposition 4.5

to our particular situation. Therefore
∫

R+
f

(4)
+ (yx)x4uεk

(x)dx = o(ε
1

m0
k ). Proposition 4.5 and especially the

asymptotic equivalence (4.29) yields (2.6). �
Let us now precise the limit just pointed out. The following study consists in describing the whole family of

coefficients (Cj , 1 ≤ j ≤ k0).

Corollary 4.8. We assume that both F ′′ and W0 are convex functions. Let f ∈ C4 (R, R) be a function with
polynomial growth. Let us recall that k0, p0 and m0 are defined respectively by (2.4) and (2.5).

1. First case: k0 < p0. We have:

lim
ε→0

ε−
1

m0

(
〈f, uε〉 − 〈f, u0〉

)
=

1
2

(
(2k0)!

2W
(2k0)
0 (0)

) 1
k0 Γ

(
3

2k0

)
Γ
(

1
2k0

) f ′′(0). (4.33)

We note that this convergence concerns the whole family {uε, ε > 0}.
2. Second case: p0 ≤ k0. Let us consider a decreasing sequence (εk)k≥1 which tends to 0 and satisfies: Cj(εk) =

W
(2j)
εk (0)εj/m0−1

k converges to Cj for all 1 ≤ j ≤ k0. Then

• Cj > 0 for 1 ≤ j ≤ p0 − 1;
• Cj = 0 for p0 ≤ j ≤ k0 − 1;
• Ck0 = W

(2k0)
0 (0)1{p0=k0}.

Proof. Set s(j) = min
{
r ≥ 1 | F (2j+2r)(0) �= 0

}
for all 1 ≤ j < k0. Let us consider a decreasing sequence

(εk)k≥1 such that Cj(εk) = W
(2j)
εk (0)εj/m0−1

k converges as k → ∞. Using similar results as (4.30) and (4.31), we
obtain

W (2j)
εk

(0) =
F (2j+2s(j))(0)

(2s(j))!
αs(j) ε

s(j)
m0
k (1 + o(1)) as k → ∞ (4.34)

with αr :=

∫
R+ x2r exp

[
−2

∑k0
j=1

Cj

(2j)! x2j
]
dx∫

R+ exp
[
−2

∑k0
j=1

Cj

(2j)! x2j
]
dx

·

1. If k0 < p0 then Cj(εk) → 0 as k → ∞ for all 1 ≤ j < k0. Indeed due to the inequality j+s(j) ≥ p0 > k0, (4.34)
leads to the asymptotic estimate:

Cj(εk) = W (2j)
εk

(0)ε
j

k0
−1

k ≈ F (2j+2s(j))(0)
(2s(j))!

αs(j)ε
j+s(j)

k0
−1

k → 0, as k → ∞.

Hence Cj = 0 for 1 ≤ j < k0. Moreover Ck0 = W
(2k0)
εk (0). The rhs of (2.6) can be easily computed using a

change of variable. We obtain (4.33) and the limit does not depend on the choice of the subsequence.

2. Let us consider now the case: p0 ≤ k0. By similar arguments as above we obtain that Cj = 0 for p0 ≤ j < k0

and Cj = F (2p0)(0)
(2s(j))! αs(j) > 0 for all 1 ≤ j < p0, since j + s(j) = p0. �
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Let us note that, in the case p0 ≤ k0, the coefficients Cj corresponding to the limit values of special subse-
quences are linked together by the relation

Cj =
F (2p0)(0)

(2(p0 − j))!

∫
R+ x2(p0−j) exp

[
−2

∑p0
l=1

Cl

(2l)!x
2l
]
dx∫

R+ exp
[
−2

∑p0
l=1

Cl

(2l)!x
2l
]
dx

, for 1 ≤ j < p0.

If we can prove that these relations admit a unique solution (Cj , 1 ≤ j < p0) then the result of Corollary 4.8
is sharpened. Indeed the limit value does not depend on the choice of the subsequence. The prefactor in the
convergence estimate is then uniquely determined. This is for instance the case for p0 = 2 but, in general, this
question is open. Let us finally observe that the rate of convergence in the particular case p0 = 2 is ε1/2 which
is actually different from the rate (namely ε) described in Sections 4.1 and 4.2. In other words the comparison
between the interaction function and the potential landscape respectively represented by the growth coefficient
α and −V ′′(0) is essential for the study of the invariant measure convergence rate associated to the limit measure
u0 = δ0.

4.4. Proof of Theorem 2.5

We deal with the convergence rate associated of outlying stationary measures for diffusion (1.2) associated
with the limit measures δ±a. Let us denote by W±

ε the pseudo-potential associated with these outlying measures
(see (2.1) for the definition of the pseudo-potential). (W±

ε )(j) converges uniformly towards (W±
0 )(j) as ε → 0.

The limit pseudo-potential is given by

W±
0 := V + F (. − (±a)) − F (a). (4.35)

Let us also assume (UC) that is to say the convexity of both functions V ′′ and F ′′. In particular, Condition (3.3)
is satisfied since ±a is the unique location of the global minimum of W±

0 . In order to present the convergence
rate of u±

ε towards u±
0 , we shall essentially apply the procedure presented in Section 4.2. By symmetry, it suffices

to study u+
ε , so in the following we delete the exponent symbol.

First of all, in order to apply Lemma A.5, we just observe that W ′′
0 (a) = α + V ′′(a) > 0 and deduce the

following result: for ε small enough, Wε reaches its global minimum only at the point aε which satisfies moreover:

aε = a − W ′
ε(a)

α + V ′′(a)
+ o {W ′

ε(a)} · (4.36)

This convergence can even be more precise.

Theorem 4.9. The distance between a and aε satisfies:

lim
ε→0

aε − a

ε
= − αV (3)(a)

4V ′′(a) (α + V ′′(a))2
·

The proof of this theorem is based on the decomposition: limε→0
aε−a
W ′

ε(a)
W ′

ε(a)
ε . The limit value of the first ratio

is determined by (4.36). It suffices to study the second ratio.

Proposition 4.10. The following convergence result holds:

lim
ε→0

W ′
ε(a)
ε

=
αV (3)(a)

4V ′′(a) (α + V ′′(a))
·

Proof. Since a is the location of a local minimum of V , W ′
0(a) = 0 and so

W ′
ε(a) = W ′

ε(a) − W ′
0(a) =

∫
R

F ′(a − z)uε(z)dz.
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We define ξ(z) := F ′(a − z) and proceed similarly to the proof of Lemma 4.4. Applying twice Lemma A.5 to
the functions f(t) := ξ(t) and f(t) := 1 and computing the ratio permits to obtain∫

R

ξ(x)uε(x)dx = ξ(aε) + γ1(ξ)ε − ξ(aε)γ1(1)ε + o(ε),

where γ1 is defined by (A.3) with A1 = a. In other words,∫
R

ξ(x)uε(x)dx = ξ(aε) +
(
− W3

4 W2
2

ξ′(a) +
ξ′′(a)
4 W2

)
ε + o(ε).

Therefore, we have

lim
ε→0

W ′
ε(a)
ε

{
1 − ξ(aε) − ξ(a)

aε − a

aε − a

W ′
ε(a)

}
= − W3

4 W2
2

ξ′(a) +
ξ′′(a)
4 W2

·

It suffices in fact to replace in (4.10) ξ+ by ξ, x0 by a and xε
0 by aε. The asymptotic result (4.11) is then satisfied.

In order to finish the proof, let us note that W3 = W (3)(a) = V (3)(a), W2 = V ′′(a) + α = W ′′
0 (a), ξ′(a) = −α

and ξ′′(a) = 0. �

Finally we are able to establish the wished convergence rate of Theorem 2.5.

Proof. Let us recall that u0 = δa. Hence 〈f, uε〉−〈f, u0〉 =
∫

R
f(x)uε(x)dx−f(a). Obviously the proof is similar

to the one of Theorem 2.3. It suffices to replace f+ by f , x0 by a and xε
0 by aε. So we obtain directly

lim
ε→0

1
ε

{∫
R

f(x)uε(x)dx − f(a)

}
=

f ′′(a)
4W ′′

0 (a)
+ f ′(a)Δ(a), (4.37)

where

Δ(a) :=
−αV (3)(a)

4V ′′(a) (α + V ′′(a))2
− V (3)(a)

4 (α + V ′′(a))2
= − V (3)(a)

4V ′′(a) (α + V ′′(a))
·

The combination of both the definition of Δ(a) and (4.37) leads to (2.8). �

Remark 4.11. Theorem 4.8 in [5] can be presented as a consequence of Theorem 2.5 applied to the particular
polynomial function f(x) := xk. However the statement of the theorem is much more accurate. Indeed, on
one hand, the authors proved in [5] that there exists an outlying stationary measure whose first kth moments
are closed to ak − kak−1 aV (3)(a)−(k−1)V ′′(a)

4aV ′′(a)(α+V ′′(a)) ε. On the other hand, we prove in Theorem 2.5 that any outlying
stationary measure around a has such moments.

Remark 4.12. In this section we consider general invariant measures converging towards a discrete limit mea-
sure with trivial support δa. In fact in the proof of Theorem 2.5 the value a does not play a crucial role: it
suffices that it characterizes the limit measure. We deduce therefore that Theorem 2.5 can be applied to δ0, it
suffices to replace a by 0 in the statement. In other words, Theorem 2.2 which concerns only symmetric invariant
measures can be extended to the whole set of invariant measures converging towards δ0.

5. Local uniqueness: the proofs

In this section, we prove Theorem 2.6. We split into three different cases (which correspond to the three cases
studied in Thms. 2.2, 2.3 and 2.5). We assume from now on that the functions F and V satisfy (2.7) which
ensures the existence of the so-called outlying stationary measures: invariant measures converging towards δ±a.
Moreover V ′′ and F ′′ shall be convex functions.
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Let uε be an invariant measure for the self-stabilizing process and μ1(ε), ·, μ2n−1(ε) its first 2n− 1 moments.
Let us assume that uε converges towards u0 ∈

{
δa; δ−a; 1

2δx0 + 1
2δ−x0

}
where x0 is the non-negative solution of

2V ′(x0) + F ′(2x0) = 0 and 2V ′′(x0) + F ′′(2x0) + α ≥ 0.

In [6] we proved that the condition α ≥ −V ′′(0) is equivalent to x0 = 0 and so 1
2δx0 + 1

2δ−x0 = δ0. We denote
by Wε the pseudo-potential associated with uε and defined by (2.1), W0 the limit pseudo-potential associated
with u0, and mk(0) the kth moment of u0.

For any measure u whose first 2n moments are bounded (we denoted these moments by (mp, 1 ≤ p ≤ 2n−1)),
we have:

Wm(x) := V (x) + F ∗ u(x) − F ∗ u(0) = W0(x) + Zm(x) − Zm(0), (5.1)

with Zm(x) :=
∑2n−1

p=1
(−1)p

p! (mp − mp(0))F (p)(x). For all k ≥ 1, we define the application ϕε
k and the probability

measure νm by

ϕε
k(m1, . . . , m2n−1) :=

∫
R

xk exp
[
− 2

ε Wm(x)
]
dx∫

R
exp

[
− 2

ε Wm(x)
]
dx

=:
∫

R

xkνm(dx). (5.2)

Moreover, if the two measures u and u0 are symmetric, then Zm and consequently Wm does not depend on the
odd trivial moments. In this case, we consider the function ξ defined by

ξε
2k(m2, . . . , m2n−2) = ϕε

2k(0, m2, 0, . . . , m2n−2, 0).

Finally we introduce Φ(ε) : R2n−1 → R2n−1 and Φ
(ε)
0 : Rn−1 → Rn−1 given by

Φ(ε) = (ϕε
1, . . . , ϕ

ε
k, . . . , ϕε

2n−1)
T and Φ

(ε)
0 = (ξε

2, . . . , ξ
ε
2k, . . . , ξε

2n−2)
T . (5.3)

Key property: The measure uε is invariant if and only if the following vector (μ1(ε), μ2(ε), . . . , μ2n−1(ε)) is a
fixed point of Φ(ε). It is invariant and symmetric if and only if μ2k+1(ε) = 0 for all 0 ≤ k ≤ n − 1 and if the
even moments compose a vector (μ2(ε), . . . , μ2n−2(ε)) which is a fixed point of Φ

(ε)
0 .

Procedure: In order to obtain local uniqueness for asymmetric stationary measures, we shall use the uniform
convergence on a compact set of Φ(ε) (and its derivatives) towards an application Φ(0) (and its derivatives).
Secondly, we shall prove that the differential of Id − Φ(0) is invertible on a small neighborhood of the limit
point (m1(0), . . . , m2n−1(0)) associated with u0. Finally we shall conclude by using the convergence rate which
assures that the vector (μ1(ε), . . . , μ2n−1(ε)) belongs to the observed compact set. We shall proceed in a similar
way for the uniqueness of symmetric stationary measures with Φ

(ε)
0 .

We begin with a preliminary result:

Proposition 5.1. Let (μ1, . . . , μ2n−1) ∈ R2n−1 and (ν2, . . . , ν2n−2) ∈ Rn−1. We set μ0 := 1 =: ν0 . For C > 0,
we define two compact sets namely Pε :=

∏2n−1
p=1 [μp − Cε; μp + Cε] and Qε :=

∏n−1
p=1 [ν2p − Cε; ν2p + Cε].

1. If the function U0(x) := V (x) +
∑2n−1

p=0
(−1)p

p! μp

(
F (p)(x) − F (p)(0)

)
reaches its global minimum at a unique

location a0 with U ′′
0 (a0) > 0 then for all m ∈ Pε, k ≥ 1 and p ∈ [1; 2n − 1], we have

∂ϕε
k

∂mp
(m) =

k ak−1
0

U ′′
0 (a0)

(−1)p−1

p!
F (p+1)(a0) + oPε(1). (5.4)

2. If the function T0(x) := V (x) +
∑n−1

p=0
1

(2p)!ν2p

(
F (2p)(x) − F (2p)(0)

)
admits two global minima ±b0 with

T ′′
0 (b0) > 0 then for all m̃ ∈ Qε, k ≥ 1 and p ∈ [1; n− 1], we have:

∂ξ2k

∂m2p
(m̃) = −2k b2k−1

0

T ′′
0 (b0)

1
(2p)!

F (2p+1)(b0) + oQε(1). (5.5)
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Proof.
Step 1. ϕε

k is directly related to Wm. By (5.1) and since F is an even polynomial function of degree 2n, we get

Wm(x) = W0(x) +
2n−1∑
p=1

(−1)p

p!
(mp − mp(0))

n∑
j≥ 1+p

2

F (2j)(0)
(2j − p)!

x2j−p.

Then, the derivative of (5.2) in the variable mp satisfies

∂ϕε
k

∂mp
(m) = −2

ε

(−1)p

p!

n∑
j≥ 1+p

2

F (2j)(0)
(2j − p)!

(
ϕε

2j+k−p(m) − ϕε
2j−p(m)ϕε

k(m)
)
. (5.6)

The derivative of ξε
2k is computed in a similar way.

Step 2. Let m ∈ Pε. For all 1 ≤ i ≤ 2n − 1, there exists Ci ∈ [−C, C] such that mi = μi + Ciε. Then, for all
l ≥ 1:

ϕε
l (m) =

∫
R

xl exp
[
− 2

ε U0(x) − 2Rm(x)
]
dx∫

R
exp

[
− 2

ε U0(x) − 2Rm(x)
]
dx

(5.7)

where Rm(x) :=
∑2n−1

p=1
(−1)p

p!
(mp−μp)

ε F (p)(x) =
∑2n−1

p=1
(−1)p

p! CpF
(p)(x). According to Lemma A.5 in [5], we

have the following asymptotic result which is uniform with respect to m ∈ Pε:

ϕε
l (m) = al

0 − l
al−2
0

4W ′′
0 (a0)

(
a0

U
(3)
0 (a0)

U ′′
0 (a0)

− (l − 1) + 4a0R
′
m(a0)

)
ε + oPε(ε).

We obtain an equivalence of the following expression directly linked to the derivative of ϕε
k:

ϕε
2j+k−p(m) − ϕε

2j−p(m)ϕε
k(m) =

k(2j − p)
2U ′′

0 (a0)
a2j+k−p−2
0 ε + oPε(ε).

Therefore, (5.6) becomes

∂ϕk

∂mp
(m) =

2
ε

(−1)p−1

p!

n∑
j≥ 1+p

2

F (2j)(0)
(2j − p)!

{
k(2j − p)
2U ′′

0 (a0)
a2j+k−p−2
0 ε + oPε(ε)

}

=
k ak−1

0 (−1)p−1

U ′′
0 (a0)p!

n∑
j≥ 1+p

2

F (2j)(0)
(2j − p − 1)!

a2j−p−1
0 + oPε(1),

which provides (5.4) as announced.

Step 3. The proof of (5.5) is similar to the previous one. Let m̃ ∈ Qε. For all 1 ≤ i ≤ n − 1, there exists
C2i ∈ [−C; C] such that m̃2i = ν2i + C2iε. Then, for all l ≥ 1, ξε

2l satisfies the same expression that ϕε
2l in (5.7)

with the support of the integral reduced to R+, U0 replaced by T0 and Rm by Rm̃ =
∑n−1

p=1
1

(2p)!C2pF
(2p)(x).

We can not apply directly Lemma A.5 in [5] since the support is reduced to R+ instead of R. However the result
can be adapted when b0 – the unique minimum of T0 on R+ – is positive. Therefore

ξε
2j+2k−2p(m̃) − ξε

2j−2p(m̃)ξε
2k(m̃) =

2k(2j − 2p)
2T ′′

0 (b0)
b2j+2k−2p−2
0 ε + oQε(ε).
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Finally (5.5) is proved as follow:

∂ξ2k

∂m2p
(m̃) =

2
ε

1
(2p)!

n∑
j≥p+1

F (2j)(0)
(2j − 2p)!

{
2k(2j − 2p)

2T ′′
0 (b0)

b2j+2k−2p−2
0 ε + oQε(ε)

}

= − 2k b2k−1
0

T ′′
0 (b0)(2p)!

n∑
j≥p+1

F (2j)(0)
(2j − 2p − 1)!

b2j−2p−1
0 + oQε(1). �

This preliminary result permits to estimate the differential and by the way answer some questions concerning
the uniqueness problem.

5.1. Local uniqueness for outlying measures

We recall that we assume that the condition (2.7) is satisfied. We are going to prove that there exist exactly
two extremal outlying measures for ε sufficiently small.

Proposition 5.2. Let F ′′ and V ′′ be two convex functions. Let (uε)ε>0 and (vε)ε>0 two families of stationary
measures converging to δa. Then there exists ε0 > 0 such that for all ε < ε0, uε = vε.

By symmetry, the same result of local uniqueness holds for δ−a.

Proof.
Step 1. For all 1 ≤ k ≤ 2n− 1, we apply Theorem 2.5 to the function f(x) := xk and so get the existence of a
constant C > 0 such that (μ1(ε), . . . , μ2n−1(ε)) and (ν1(ε), . . . , ν2n−1(ε)) belong to Pε for ε small enough. Here
μk(ε) (resp. νk(ε)) is the kth moment of uε (resp. vε) and Pε :=

∏2n−1
i=1 [ai − Cε; ai + Cε].

Step 2. Since uε and vε are invariant measures, each vector composed with the first 2n− 1 moments is solution
of the equation: μ = Φε(μ) where Φε is defined by (5.3). Therefore let us prove that this equation admits a
unique solution in Pε, it suffices to point out that Id− JacΦε is invertible. Here JacΦε represents the Jacobian
matrix of the 2n − 1 dimensional function Φε. According to Proposition 5.1 applied to μp = ap, U0 = W+

0

defined by (4.35) and satisfying (W+
0 )′′(a) = V ′′(a) + F ′′(0) = V ′′(a) + α > 0 (see condition (V-3) and (1.4)),

we get

∂ϕ
(ε)
k

∂mp
(m) =

kak−1

(W+
0 )′′(a)

(−1)p−1

p!
F (p+1)(a) + oPε(1).

The Jacobian matrix then takes a simple expression. Indeed it suffices to prove that (W+
0 )′′(a)Id + V1V

T
2 is

invertible, with V1(i) := iai−1 and V2(j) := (−1)j

j! F (j+1)(a), 1 ≤ i, j ≤ 2n − 1. The proof of Lemma 4.7 in [5]
solves this question: if (W+

0 )′′(a) + 〈V1, V2〉 �= 0 then the matrix considered is invertible. Let us note that
〈V1, V2〉 =

∑2n−1
i=1

iai−1(−1)i

i! F (i+1)(a) = −F ′′(0) = −α. Hence (W+
0 )′′(a) + 〈V1, V2〉 = V ′′(a) > 0 because of

the hypothesis (V-3). By these arguments we have obtained that μ = Φε(μ) admits a unique solution in Pε. In
order to conclude it suffices to note that the first 2n − 1 moments characterize the stationary measure: F is a
polynomial function of degree 2n and the invariant measures are defined by (2.2). �

5.2. Local uniqueness for symmetric measures

We shall divide the study into two parts. The first one concerns the limit measure u0 = δ0 and the second
one concerns u0 = 1

2δ−x0 + 1
2δx0 .

Let us now consider the limit measure δ0. This discrete measure is effectively a limit measure when α > θ
(these parameters are defined by (1.4) and (1.3)). In this case, we get also the following property B = ∅.

Proposition 5.3. Let V ′′ and F ′′ be two convex functions. Let α > θ. There exists a unique symmetric invariant
measure for ε small enough.
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Proof.
Step 1. According to Theorem 4.5 of [5], we know that there exists at least one symmetric invariant measure
uε. We know by Theorem 5.4 in [6] that any such symmetric stationary converges weakly to δ0 since α > θ.

Step 2. Let us consider now two symmetric invariant measures uε and vε converging towards δ0.
By Theorem 2.2, there exists C > 0 such that the vectors (μ2(ε), . . . , μ2n−2(ε)) and (ν2(ε), . . . , ν2n−2(ε))

belong to Qε for ε small enough. Here μ2k(ε) (resp. ν2k(ε)) is the 2kth moment of uε (resp. vε) and Qε :=
[−Cε, Cε]n−1.

As in the preceding proof, it suffices to prove that Id − JacΦε
0 is locally invertible, where JacΦε

0 denotes the
Jacobian matrix. Applying Proposition 5.1 with ν2p = 0 for all 1 ≤ p ≤ n− 1 and so T0 = W0 which admits one
unique global minimum location: 0, we get for m̃ ∈ Qε, ∂ξ2k

∂m2p
(m̃) = oQε(1). This implies directly that Id−JacΦε

0

is invertible. Moreover since F is a polynomial function of degree 2n, these moments characterize the measure,
see (2.1). �

Let us finally consider the case u0 = 1
2 δ−x0 + 1

2 δx0 , x0 > 0, associated with the study developed in Section 4.2.
The discrete measure u0 is a limit measure for families of symmetric invariant measures provided that α < θ
(these parameters are defined by (1.4) and (1.3)).

Proposition 5.4. Let F ′′ and V ′′ be two convex functions and α < θ. For ε small enough, the self-stabilizing
process (1.2) admits a unique symmetric invariant measure.

Proof. We shall assume that deg(F ) ≥ 6. Indeed, we have already proved (Thm. 3.2 in [5]) that, in the linear
case (F ′ is linear), there exists a unique symmetric invariant measure for (1.2). Moreover, Example 4.2 in [5]
points out that there exists a unique symmetric invariant measure for deg(F ) = 4.

According to Theorem 5.4 of [6], since V ′′ and F ′′ are convex functions, each sequence of symmetric stationary
measures converges to the discrete measure 1

2δx0 + 1
2δ−x0 . Let (uε)ε>0 be such a sequence then it defines a

fixed point of the application Φ
(ε)
0 defined by (5.3). Moreover, by Theorem 2.3, we know that there exists

C > 0 such that the first n − 1 even moments of uε represented by (m̃2(ε), . . . , m̃2n−2(ε)) belongs to the set
Qε :=

∏n−1
p=1 [x2p

0 − Cε, x2p
0 + Cε]. In order to prove the statement of the theorem, it suffices to prove that the

equation μ = Φ
(ε)
0 (μ) admits a unique symmetric solution in Qε. As explained in the two preceding proofs, the

work just consists in verifying that Id−JacΦ
(ε)
0 is invertible where JacΦ

(ε)
0 denotes the Jacobian matrix. Applying

Proposition 5.1 with ν2p = x2p
0 for all 1 ≤ p ≤ n − 1 and so T0 = W0 = V + 1

2F (. − x0) + 1
2F (. + x0) − F (x0)

which reaches its global minimum for two locations −x0 and x0 (see (4.4)), we get for m̃ ∈ Qε

∂ξε
2k

∂m2p
(m̃) = − 2k x2k−1

0

(2p)!W ′′
0 (x0)

F (2p+1)(x0) + o(1).

By similar arguments as those used in Proposition 5.3, we have just to verify that W ′′
0 (x0) + 〈V1, V2〉 �= 0 where

〈V1, V2〉 = 1
2 (F ′′(2x0) − F ′′(0)). On one hand, the definition of x0 (4.4) leads to W ′′

0 (x0) ≥ 0, on the other hand
the convexity of F ′′ which is a polynomial function of degree larger than 6 permits to obtain 〈V1, V2〉 > 0. �

Combining Propositions 5.2–5.4 leads to the statement of Theorem 2.5.

Remark 5.5.
1. Using the convergence rate from uε towards u0, we prove that there exists a unique symmetric invariant
measure for the self-stabilizing process (1.2) under the convexity property of V ′′ and F ′′ and when α > θ or
α < θ. The case α = θ is more difficult since the convergence rate is not of order ε. It needs then some other
kind of tools.
2. Let us note that the uniqueness of symmetric invariant measure was already studied in [1] where the authors
considered the constant potential case V (x) := 0. They obtained uniqueness results for α large enough but ε
fixed which is to relate to our situation where α > θ but the noise intensity ε should be small. Their proof is
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essentially based on a contraction map which of course leads to local uniqueness. Our study handles directly
with local uniqueness.

Appendix A.

Let us finally present some useful asymptotic results which are closed to the classical Laplace’s method. Let
us first recall a preliminary asymptotic result (see [5]):

Lemma A.1. Let M > 0. Let us assume that U is C2([M,∞[)-continuous, U(x) �= 0 and U ′′(x) > 0 for all
x ∈ [M,∞[ and limx→∞

U ′′(x)
(U ′(x))2 = 0. If x → e−U(x) is integrable on R then:

∫ +∞

x

e−U(t)dt ≈ e−U(x)

U ′(x)
and

∫ x

M

eU(t)dt ≈ eU(x)

U ′(x)
as x → ∞.

Lemma A.2. Set ε > 0. Let U and G two C∞(R)-continuous functions. We define Uμ := U+μG for μ belonging
to a compact interval I of R. Let us introduce an interval [a, b] satisfying: U ′

μ(a) �= 0, U ′
μ(b) �= 0 and Uμ(x)

reaches its global minimum on the interval [a, b] in a unique point xμ ∈]a, b[ for all μ ∈ I. We assume that there

exists an exponent k0 independent of μ ∈ I such that 2k0 = minr∈N∗
{
U

(r)
μ (xμ) �= 0

}
. Let f a C4(R)-continuous

function. Then letting the parameter ε tend to 0, we get

∫ b

a

f(t)e−
Uμ(t)

ε dt =
f(xμ)

k0

(
ε(2k0)!

U2k0
μ (xμ)

) 1
2k0

Γ

(
1

2k0

)
e−

Uμ(xμ)
ε (1 + oI(1)),

where Γ represents the Euler function and oI(1) converges towards 0 uniformly with respect to μ ∈ I.

Proof. The arguments are similar to those used in Lemma A.2 [5]. �

Lemma A.3. Let Uε and U ∈ C∞ ([a; b], R) such that for all i ∈ N, U
(i)
ε converges to U (i) uniformly on [a; b]

as ε → 0. If the global minimum of U is reached at a unique point x0 on [a; b] with x0 ∈]a; b[, then, for ε small
enough,
1. Uε has a unique global minimum location xε on [a; b] with xε ∈]a; b[.
2. U ′′(x0) > 0 implies U ′′

ε (xε) > 0 and

xε = x0 −
U ′

ε(x0)
U ′′(x0)

+ o {U ′
ε(x0)} .

3. Furthermore, if U ′′(x0) > 0, by taking the limit ε → 0, for all the function f ∈ C4 ([a; b]; R), we get

∫ b

a

f(t)e
−2Uε(t)

ε dt =
√

πε

U2
e−

2Uε(xε)
ε

{
f(xε) + γx0(f)ε + o(ε)

}

with

γx0(f) := f(x0)
(

5 U2
3

48 U3
2

− U4

16 U2
2

)
− f ′(x0)

U3

4 U2
2

+
f ′′(x0)
4 U2

·

Here Uk := U
(k)
ε (xε).

Proof.

1. We shall proceed using reductio ad absurdum. Let us assume that there exists a sequence (εk)k≥1 such that

Uεk
admits two different locations for the global minimum: x

(1)
k and x

(2)
k for all k ≥ 1. Due to the uniform
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convergence of Uε on [a; b], both x
(1)
k and x

(2)
k tend to x0 as k → ∞. Hence, for any δ > 0, there exists k0

large enough, such that both x
(1)
k and x

(2)
k belong to ]x0 − δ; x0 + δ[ for k ≥ k0. Moreover U ′′(x0) > 0 by

assumption and U ′′
ε converges uniformly on [a; b]; so there exist ρ > 0 and δ0 > 0 such that U ′′

εk
(x) ≥ ρ for

all x ∈ [x0 − δ0; x0 + δ0] and for k large enough. Consequently, the equation U ′(x) = 0 does not admit several
solutions on this interval. Taking δ = δ0, we obtain the uniqueness of the global minimum location for Uε and
ε small enough.

2. The uniform convergence and the assumption U ′′(x0) > 0 imply that U ′′
ε (xε) > 0 for ε small enough. Moreover

we get the following convergence U ′
ε(x0) → 0 as ε → 0. Using the mean value theorem, we obtain as ε → 0:

U ′
ε(x0) = U ′

ε(xε) + U ′′
ε (xε) (x0 − xε) (1 + o(1))

= U ′
ε(xε) + U ′′(x0) (x0 − xε) (1 + o(1)).

Since U ′
ε(xε) = 0, we obtain

xε = x0 −
U ′

ε(x0)
U ′′(x0)

+ o {U ′
ε(x0)} .

3. It suffices to adapt the proof of Lemma A.3 in [5]. The arguments are namely the same. �

We can extend the previous statement to integrals with unbounded supports.

Lemma A.4. Let Uε and U ∈ C∞ (R, R) such that for all i ∈ N, U
(i)
ε converges uniformly on all compact

subset. If U has r global minimum locations A1 < · · · < Ar and if there exist R > 0 and εc such that Uε(x) > x2

for all |x| > R and ε < εc, then, for ε small enough, we get:

1. Uε has exactly one global minimum location Aε
i on each interval Ii, where Ii represent the Voronöı cells

corresponding to the central points Ai, with 1 ≤ i ≤ r.

2. U ′′(Ai) > 0 implies U ′′
ε (Aε

i) > 0 and

Aε
i = Ai −

U ′
ε(Ai)

U ′′(Ai)
+ o {U ′

ε(Ai)} .

3. Furthermore, if U ′′(Ai) > 0 for all 1 ≤ i ≤ r, then for any function f ∈ C4 (R, R) with polynomial growth,
the following asymptotic development holds as ε → 0:

∫
R

f(t)e−
2Uε(t)

ε dt =
r∑

j=1

√
πε

U ′′
ε (Aε

j)
e−

2Uε(Aε
j)

ε

{
f(Aε

j) + γj(f)ε + o(ε)
}

with

γj(f) := f(Aj)

(
5 U2

3,j

48 U3
2,j

− U4,j

16 U2
2,j

)
− f ′(Aj)

U3,j

4 U2
2,j

+
f ′′(Aj)
4 U2,j

,

and Uk,j := U
(k)
ε (Aε

j).

Proof. For all 2 ≤ j ≤ r − 1, we apply Lemma A.3 on the interval Ij defined in the statement. We also apply
Lemma A.3 on [−R; R]∩ I1 and [−R; R]∩ Ir. Hence the result is proved on the integral [−R; R]. To conclude it
suffices to note that the integral on [−R; R]c is negligible due to the polynomial growth of f and the Gaussian
behavior of exp

[
− 2

ε Uε

]
. �

Finally we present some special Laplace method applied to the pseudo-potential defined by (2.1).
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Lemma A.5. Let (uε)ε>0 a sequence of stationary measures which converges weakly to u0. We assume moreover
that {μ2n(ε), ε > 0} is bounded with 2n := deg(F ). Let Wε and W0 defined by (2.1) resp. (2.3). We denote by
A1 < · · · < Ar (respectively B1 < · · · < Bs if s > 0) the elements of A, the support of the limit measure u0

(resp. B the set of all locations for W0’s global minimum which do not belong to A).

1. Let us consider the set of intervals (Ii)1≤i≤r+s which correspond to the Voronöı cells centered in the elements
of D := A ∪ B. If W ′′

0 (D) > 0 for all D ∈ D, Wε reaches its global minimum at a unique location in Ii denoted
by Dε

i (also denoted by Aε· or Bε· ), 1 ≤ i ≤ r + s, which converges to Di ∈ D. Then, Dε
i satisfies the following

asymptotic development:

Dε
i = Di −

W ′
ε(Di)

W ′′
0 (Di)

+ o {W ′
ε(Di)} , 1 ≤ i ≤ r + s. (A.1)

2. If uε is symmetric, if u0 = δ0, and if both W0 and F ′′ are convex functions, then 0 is the unique location of
the global minimum of Wε. Furthermore, if F ′ is not a linear function, we get W ′′

ε (0) > 0.

3. If W ′′
0 (D) > 0 for all D ∈ D, then for any function f ∈ C4 (R, R) with polynomial growth, we have as ε → 0:

∫
R

f(t)e−
2Wε(t)

ε dt =
r∑

j=1

√
πε

W ′′
ε (Aε

j)
e−

2Wε(Aε
j )

ε

{
f(Aε

j) + γj(f)ε + o(ε)
}

(A.2)

+
s∑

l=1

√
πε

W ′′
ε (Bε

l )
e−

2Wε(Bε
l )

ε

{
f(Bl) + o(1)

}

with

γj(f) := f(Aj)

(
5 W2

3,j

48 W3
2,j

− W4,j

16 W2
2,j

)
− f ′(Aj)

W3,j

4 W2
2,j

+
f ′′(Aj)
4 W2,j

· (A.3)

Here Wk,j := W
(k)
ε (Aε

j).

Proof.

1. (Wε)ε>0 satisfies the assumptions of Lemma A.4. Indeed, W
(j)
ε converges uniformly towards W

(j)
0 , for j ∈ N,

on all compact subsets of R, see Proposition 3.3 in [6]. Besides, since F is a even polynomial function of degree
2n and since the moments are bounded, F ∗ uε(x) − F ∗ uε(0) ≥ P (x) where P is a polynomial function
independent of ε whose principal term is positive. Therefore, using (V-4), we obtain the following lower bound:
Wε(x) ≥ C4x

4 − C2x
2 + P (x). The application of Lemma A.4 provides the existence of Aε

j and Bε
l . Let D be

a location for the global minimum of W0. If W ′′
0 (D) > 0, the uniform convergence of Dε towards D and the

convergence of Wε towards W0, on each compact set, imply W ′′
ε (Dε) > 0 for ε small enough. The asymptotic

development (A.1) comes directly from Lemma A.4.

2. If u0 = δ0 then Theorem 3.6 in [6] implies that 0 is one global minimum of W0 and by the way W0(x) ≥
W0(0) = 0 for all x ∈ R. Furthermore, since F ′′ is a convex function and uε is symmetric and absolutely
continuous with respect to the Lebesgue measure, see [5], we obtain the following lower bound

W ′′
ε (x) − W ′′

0 (x) =
∫

R+

(
F ′′(x − z) + F ′′(x + z) − 2F ′′(x)

)
uε(z)dz ≥ 0.

Due to the convexity of W0, we obtain the convexity of Wε: W ′′
ε (x) ≥ 0 for all x ∈ R. Let us note that Wε(0) = 0

and W ′
ε(0) = W ′

0(0) = 0. We deduce that Wε(x) ≥ W0(x) ≥ 0 for all x ∈ R.
Let us prove that the global minimum of Wε is only reached at 0. If there exists m > 0 such that Wε(m) = 0,

then due to the convexity Wε(x) = W0(x) = 0 for any x ∈ [0, m]. By definition, since u0 = δ0, we get
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W0 = V + F . By (V-6), we know that V is an “analytic function” on [−a, a] and F is polynomial. Therefore
W0(x) = V (x)+F (x) = 0 and W ′′

0 (x) = V ′′(x)+F ′′(x) = 0 for any x ∈ [−a, a]. This contradicts the hypotheses
(V-3) and (F-2) which imply that W ′′(a) > 0. Finally we conclude that 0 is the unique location of the global
minimum of Wε.

Besides, if F ′ is not a linear function then F ′′(z) > F ′′(0) for all z �= 0. Consequently, W ′′
ε (0) − W ′′

0 (0) =∫
R

(F ′′(z) − F ′′(0))uε(z)dz > 0 because F ′ is odd and convex on R+. Therefore, W ′′
ε (0) > W ′′

0 (0) ≥ 0 and so 0
is the unique location of the global minimum.

3. As Bε
l tends to Bl, we have f(Bε

l ) = f(Bl) + o(1) so that (A.2) is a direct consequence of Lemma A.4. �
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