Free Access
Volume 16, 2012
Page(s) 139 - 150
Published online 03 July 2012
  1. S.E. Ahmed, Shrinkage estimation of regression coefficients from censored data with multiple observations, in Empirical Bayes and Likelihood inference, edited by S.E. Ahmed and N. Reid. Springer, New York (2001) 103–120. [Google Scholar]
  2. S.E. Ahmed and A.K.Md.E. Saleh, Improved nonparametric estimation of location vector in a multivariate regression model. J. Nonparametr. Stat. 11 (1999) 51–78. [CrossRef] [Google Scholar]
  3. A.R. Bergstrom, Continuous Time Econometric Modelling. Oxford University Press, Oxford (1990). [Google Scholar]
  4. A. DasGupta, Asymptotic theory of statistics and probability. Springer Science & Business Media, New York (2008). [Google Scholar]
  5. M.C.M. De Gunst, On the distribution of general quadratic functions in normal vectors. Stat. Neerl. 41 (1987) 245–251. [CrossRef] [Google Scholar]
  6. S. Engen, R. Lande, T. Wall and J.P. DeVries, Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. The American Naturalist 160 (2002) 60–73. [CrossRef] [PubMed] [Google Scholar]
  7. S. Iyengar, Diffusion models for neutral activity, in Statistics for the 21st Century : Methodologies for Applications of the Future, edited by C.R. Rao and G. Szekely. Marcel-Dekker (2000) 233–250. [Google Scholar]
  8. A.J. Izenman, Modern Multivariate Statistical Techniques : Regression, Classification, and Manifold Learning. Springer Science, Business Media, LLC (2008). [Google Scholar]
  9. G.G. Judge and M.E. Bock, The statistical implication of pre-test and Stein-rule estimators in econometrics. Amsterdam, North Holland (1978). [Google Scholar]
  10. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1991). [Google Scholar]
  11. A.Y. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, in Springer Series in Statistics. Springer-Verlag, London (2004). [Google Scholar]
  12. R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes : Generale Theory I. Springer-Verlag, New York (1977). [Google Scholar]
  13. R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes : Applications II. Springer-Verlag, New York (1978). [Google Scholar]
  14. S. Nkurunziza and S.E. Ahmed, Shrinkage Drift Parameter Estimation for Multi-factor Ornstein-Uhlenbeck Processes. Appl. Stoch. Models Bus. Ind. 26 (2010) 103–124. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Papanicolaou, Diffusion in random media, in Surveys in Applied Mathematics, edited by J.B. Keller, D. McLaughlin and G. Papanicolaou. Plenum Press (1995) 205–255. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.