Free Access
Issue
ESAIM: PS
Volume 16, 2012
Page(s) 97 - 113
DOI https://doi.org/10.1051/ps/2010017
Published online 03 July 2012
  1. A. Balkema and L. de Haan, Residual life time at a great age. Ann. Probab. 2 (1974) 792–801. [CrossRef] [Google Scholar]
  2. F. Caeiro, M.I. Gomes and D. Pestana, A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Stat. Probab. Lett. 79 (2009) 295–303. [CrossRef] [Google Scholar]
  3. G. Ciuperca and C. Mercadier, Semi-parametric estimation for heavy tailed distributions. Extremes 13 (2010) 55–87. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Diebolt, A. Guillou and R. Worms, Asymptotic behaviour of the probability-weighted moments and penultimate approximation. ESAIM : PS 7 (2003) 217–236. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J. Diebolt, A. Guillou and I. Rached, Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841–857. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Diebolt, A. Guillou and I. Rached, Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841–857. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Drees and E. Kaufmann, Selecting the optimal sample fraction in univariate extreme value estimation. Stoc. Proc. Appl. 75 (1998) 149–172. [CrossRef] [Google Scholar]
  8. M.I. Fraga Alves, L. de Haan and T. Lin, Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat. 12 (2003) 155–176. [Google Scholar]
  9. M.I. Fraga Alves, M.I. Gomes and L. de Haan, A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica 60 (2003) 193–213. [MathSciNet] [Google Scholar]
  10. M.I. Fraga Alves, L. de Haan and T. Lin, Third order extended regular variation. Publ. Inst. Math. 80 (2006) 109–120. [CrossRef] [Google Scholar]
  11. M.I. Fraga Alves, M.I. Gomes, L. de Haan and C. Neves, A note on second order conditions in extreme value theory : linking general and heavy tail conditions. REVSTAT Stat. J. 5 (2007) 285–304. [Google Scholar]
  12. M.I. Gomes and J. Martins, “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5 (2002) 5–31. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.I. Gomes, L. de Haan and L. Peng, Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5 (2002) 387–414. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Hall and A.H. Welsh, Adaptive estimates of parameters of regular variation. Ann. Stat. 13 (1985) 331–341. [CrossRef] [Google Scholar]
  15. J. Hosking and J. Wallis, Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (1987) 339–349. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Peng, Asymptotically unbiased estimator for the extreme value index. Statist. Prob. Lett. 38 (1998) 107–115. [CrossRef] [Google Scholar]
  17. J. Pickands III, Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119–131. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.P. Raoult and R. Worms, Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Applied Prob. 35 (2003) 1007–1027. [CrossRef] [Google Scholar]
  19. R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley & Son (1980). [Google Scholar]
  20. A.W. van der Vaart, Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics (2000). [Google Scholar]
  21. R. Worms, Penultimate approximation for the distribution of the excesses. ESAIM : PS 6 (2002) 21–31. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.