Free Access
Issue
ESAIM: PS
Volume 16, 2012
Page(s) 97 - 113
DOI https://doi.org/10.1051/ps/2010017
Published online 03 July 2012
  1. A. Balkema and L. de Haan, Residual life time at a great age. Ann. Probab. 2 (1974) 792–801. [CrossRef]
  2. F. Caeiro, M.I. Gomes and D. Pestana, A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Stat. Probab. Lett. 79 (2009) 295–303. [CrossRef]
  3. G. Ciuperca and C. Mercadier, Semi-parametric estimation for heavy tailed distributions. Extremes 13 (2010) 55–87. [CrossRef] [MathSciNet]
  4. J. Diebolt, A. Guillou and R. Worms, Asymptotic behaviour of the probability-weighted moments and penultimate approximation. ESAIM : PS 7 (2003) 217–236. [CrossRef] [EDP Sciences]
  5. J. Diebolt, A. Guillou and I. Rached, Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841–857. [CrossRef] [MathSciNet]
  6. J. Diebolt, A. Guillou and I. Rached, Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841–857. [CrossRef] [MathSciNet]
  7. H. Drees and E. Kaufmann, Selecting the optimal sample fraction in univariate extreme value estimation. Stoc. Proc. Appl. 75 (1998) 149–172. [CrossRef]
  8. M.I. Fraga Alves, L. de Haan and T. Lin, Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat. 12 (2003) 155–176.
  9. M.I. Fraga Alves, M.I. Gomes and L. de Haan, A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica 60 (2003) 193–213. [MathSciNet]
  10. M.I. Fraga Alves, L. de Haan and T. Lin, Third order extended regular variation. Publ. Inst. Math. 80 (2006) 109–120. [CrossRef]
  11. M.I. Fraga Alves, M.I. Gomes, L. de Haan and C. Neves, A note on second order conditions in extreme value theory : linking general and heavy tail conditions. REVSTAT Stat. J. 5 (2007) 285–304.
  12. M.I. Gomes and J. Martins, “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5 (2002) 5–31. [CrossRef] [MathSciNet]
  13. M.I. Gomes, L. de Haan and L. Peng, Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5 (2002) 387–414. [CrossRef] [MathSciNet]
  14. P. Hall and A.H. Welsh, Adaptive estimates of parameters of regular variation. Ann. Stat. 13 (1985) 331–341. [CrossRef]
  15. J. Hosking and J. Wallis, Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (1987) 339–349. [CrossRef] [MathSciNet]
  16. L. Peng, Asymptotically unbiased estimator for the extreme value index. Statist. Prob. Lett. 38 (1998) 107–115. [CrossRef]
  17. J. Pickands III, Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119–131. [CrossRef] [MathSciNet]
  18. J.P. Raoult and R. Worms, Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Applied Prob. 35 (2003) 1007–1027. [CrossRef]
  19. R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley & Son (1980).
  20. A.W. van der Vaart, Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics (2000).
  21. R. Worms, Penultimate approximation for the distribution of the excesses. ESAIM : PS 6 (2002) 21–31. [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.