Volume 15, 2011
Supplement: In honor of Marc Yor
Page(s) S2 - S10
Published online 19 May 2011
  1. P. Biane, Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields 89 (1991) 117–129. [CrossRef] [Google Scholar]
  2. P. Biane, Minuscule weights and random walks on lattices, Quantum probability and related topics, QP-PQ VII. World Scientific Publishing, River Edge, NJ (1992) 51–65. [Google Scholar]
  3. P. Biane, Intertwining of Markov semi-groups, some examples. in Séminaire de Probabilités XXIX. Lecture Notes in Math. 1613, Springer, Berlin (1995) 30–36. [Google Scholar]
  4. P. Biane, Quantum Markov processes and group representations, Quantum probability communications, QP-PQ X. World Scientific Publishing, River Edge, NJ (1998) 53–72. [Google Scholar]
  5. P. Biane, Le théorème de Pitman, le groupe quantique SUq(2), et une question de P.A. Meyer, In memoriam Paul-André Meyer, in Séminaire de Probabilités XXXIX. Lecture Notes in Math. 1874, Springer, Berlin (2006) 61–75. [Google Scholar]
  6. P. Carmona, F. Petit and M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana 14 (1998) 311–367. [MathSciNet] [Google Scholar]
  7. F.M. Choucroun, Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits. Mém. Soc. Math. France (N.S.) 58 (1994) [Google Scholar]
  8. A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA (1994). [Google Scholar]
  9. J. Dubédat, Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 539–552. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Faraut, Analyse sur les paires de Gelfand, in Analyse harmonique. Les Cours du CIMPA (1982). [Google Scholar]
  11. J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24 (1974) 171–217. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977) 95–153. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Hirsch and M. Yor, Fractional intertwinings between two Markov semi-groups. Potential Anal. 31 (2009) 133–146. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Matsumoto and M. Yor, An analogue of Pitman's 2MX theorem for exponential Wiener functionals. Part I. A time-inversion approach. Nagoya Math. J. 159 (2000) 125–166. [MathSciNet] [Google Scholar]
  15. N. O'Connell, Directed polymers and the quantum Toda lattice. arXiv:0910.0069 [Google Scholar]
  16. K.R. Parthasarathy, An introduction to quantum stochastic calculus. Monographs Math. 85, Birkhäuser Verlag, Basel (1992). [Google Scholar]
  17. J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7 (1975) 511–526. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.