Volume 15, 2011
Supplement: In honor of Marc Yor
Page(s) S2 - S10
Published online 19 May 2011
  1. P. Biane, Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields 89 (1991) 117–129. [CrossRef]
  2. P. Biane, Minuscule weights and random walks on lattices, Quantum probability and related topics, QP-PQ VII. World Scientific Publishing, River Edge, NJ (1992) 51–65.
  3. P. Biane, Intertwining of Markov semi-groups, some examples. in Séminaire de Probabilités XXIX. Lecture Notes in Math. 1613, Springer, Berlin (1995) 30–36.
  4. P. Biane, Quantum Markov processes and group representations, Quantum probability communications, QP-PQ X. World Scientific Publishing, River Edge, NJ (1998) 53–72.
  5. P. Biane, Le théorème de Pitman, le groupe quantique SUq(2), et une question de P.A. Meyer, In memoriam Paul-André Meyer, in Séminaire de Probabilités XXXIX. Lecture Notes in Math. 1874, Springer, Berlin (2006) 61–75.
  6. P. Carmona, F. Petit and M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana 14 (1998) 311–367. [MathSciNet]
  7. F.M. Choucroun, Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits. Mém. Soc. Math. France (N.S.) 58 (1994)
  8. A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA (1994).
  9. J. Dubédat, Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 539–552. [CrossRef] [MathSciNet]
  10. J. Faraut, Analyse sur les paires de Gelfand, in Analyse harmonique. Les Cours du CIMPA (1982).
  11. J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24 (1974) 171–217. [CrossRef] [MathSciNet]
  12. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977) 95–153. [CrossRef] [MathSciNet]
  13. F. Hirsch and M. Yor, Fractional intertwinings between two Markov semi-groups. Potential Anal. 31 (2009) 133–146. [CrossRef] [MathSciNet]
  14. H. Matsumoto and M. Yor, An analogue of Pitman's 2MX theorem for exponential Wiener functionals. Part I. A time-inversion approach. Nagoya Math. J. 159 (2000) 125–166. [MathSciNet]
  15. N. O'Connell, Directed polymers and the quantum Toda lattice. arXiv:0910.0069
  16. K.R. Parthasarathy, An introduction to quantum stochastic calculus. Monographs Math. 85, Birkhäuser Verlag, Basel (1992).
  17. J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7 (1975) 511–526. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.