Volume 15, 2011
Supplement: In honor of Marc Yor
Page(s) S11 - S24
Published online 19 May 2011
  1. J. Bertoin and Y. Le Jan, Representation of measures by balayage from a regular recurrent point. Ann. Probab. 20 (1992) 538–548. [CrossRef] [Google Scholar]
  2. P. Carr, Local Variance Gamma. Private communication (2008). [Google Scholar]
  3. P. Carr and D. Madan, Determining volatility surfaces and option values from an implied volatility smile, in Quantitative Analysis of Financial Markets II, edited by M. Avellaneda. World Scientific (1998) 163–191. [Google Scholar]
  4. R.V. Chacon, Potential processes. Trans. Amer. Math. Soc. 226 (1977) 39–58. [CrossRef] [Google Scholar]
  5. A.M.G. Cox, Extending Chacon-Walsh: minimality and generalised starting distributions, in Séminaire de Probabilités XLI. Lecture Notes in Math. 1934, Springer, Berlin (2008) 233–264. [Google Scholar]
  6. J.L. Doob, Measure theory. Graduate Texts Math. 143, Springer-Verlag, New York (1994). [Google Scholar]
  7. B. Dupire, Pricing with a smile. Risk 7 (1994) 18–20. [Google Scholar]
  8. H. Dym and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem. Probab. Math. Statist. 31. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1976). [Google Scholar]
  9. D. Hobson, The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices, in Paris-Princeton Lectures on Mathematical Finance 2010, edited by R.A. Carmona, E. Çinlar, I. Ekeland, E. Jouini, J.A. Scheinkman and N. Touzi. Lecture Notes in Math. 2003, Springer (2010) 267–318. [Google Scholar]
  10. K. Itô, Essentials of stochastic processes. Translations Math. Monographs 231, American Mathematical Society, Providence, RI, (2006), translated from the 1957 Japanese original by Yuji Ito. [Google Scholar]
  11. L. Jiang and Y. Tao, Identifying the volatility of underlying assets from option prices. Inverse Problems 17 (2001) 137–155. [CrossRef] [Google Scholar]
  12. I.S. Kac and M.G. Kreĭn, Criteria for the discreteness of the spectrum of a singular string. Izv. Vysš. Učebn. Zaved. Matematika 2 (1958) 136–153. [Google Scholar]
  13. F.B. Knight, Characterization of the Levy measures of inverse local times of gap diffusion, in Seminar on Stochastic Processes (Evanston, Ill., 1981). Progr. Probab. Statist. 1, Birkhäuser Boston, Mass. (1981) 53–78. [Google Scholar]
  14. S. Kotani and S. Watanabe, Kreĭn's spectral theory of strings and generalized diffusion processes, in Functional analysis in Markov processes (Katata/Kyoto, 1981). Lecture Notes in Math. 923, Springer, Berlin (1982) 235–259. [Google Scholar]
  15. M.G. Kreĭn, On a generalization of investigations of Stieltjes. Doklady Akad. Nauk SSSR (N.S.) 87 (1952) 881–884. [Google Scholar]
  16. U. Küchler and P. Salminen, On spectral measures of strings and excursions of quasi diffusions, in Séminaire de Probabilités XXIII. Lecture Notes in Math. 1372, Springer, Berlin (1989) 490–502. [Google Scholar]
  17. D.B. Madan and M. Yor, Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8 (2002) 509–536. [Google Scholar]
  18. I. Monroe, On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 (1972) 1293–1311. [CrossRef] [Google Scholar]
  19. J. Obłój, The Skorokhod embedding problem and its offspring. Prob. Surveys 1 (2004) 321–392. [CrossRef] [Google Scholar]
  20. L.C.G. Rogers and D. Williams, Diffusions, Markov processes, and martingales, volume 2, Itô Calculus. Cambridge University Press, Cambridge, reprint of the second edition of 1994 (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.