Free Access
Volume 15, 2011
Page(s) 168 - 179
Published online 05 January 2012
  1. I.B. Alberink and V. Bentkus, Berry-Esseen bounds for von-Mises and U-statistics. Lith. Math. J. 41 (2001) 1–16. [CrossRef] [Google Scholar]
  2. I.B. Alberink and V. Bentkus, Lyapunov type bounds for U-statistics. Theory Probab. Appl. 46 (2002) 571–588. [CrossRef] [Google Scholar]
  3. J.N. Arvesen, Jackknifing U-statistics. Ann. Math. Statist. 40 (1969) 2076–2100. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y.V. Borovskikh and N.C. Weber, Large deviations of U-statistics I. Lietuvos Matematikos Rinkinys 43 (2003) 13–37. [Google Scholar]
  5. Y.V. Borovskikh and N.C. Weber, Large deviations of U-statistics I. Lietuvos Matematikos Rinkinys 43 (2003) 294–316. [Google Scholar]
  6. H. Callaert and N. Veraverbeke, The order of the normal approximation for a studentized U-statistics. Ann. Statist. 9 (1981) 194–200. [CrossRef] [MathSciNet] [Google Scholar]
  7. W. Hoeffding, A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 (1948) 293–325. [Google Scholar]
  8. B.-Y. Jing, Q.M. Shao and Q. Wang, Self-normalized Cramér-type large deviation for independent random variables. Ann. Probab. 31 (2003) 2167–2215. [CrossRef] [MathSciNet] [Google Scholar]
  9. B.-Y. Jing, Q.M. Shao, W. Zhou, Saddlepoint approximation for Student's t-statistic with no moment conditions. Ann. Statist. 32 (2004) 2679–2711. [CrossRef] [MathSciNet] [Google Scholar]
  10. V.S. Koroljuk and V. Yu. Borovskich, Theory of U-statistics. Kluwer Academic Publishers, Dordrecht (1994). [Google Scholar]
  11. Q.M. Shao, Self-normalized large deviations. Ann. Probab. 25 (1997) 285–328. [CrossRef] [MathSciNet] [Google Scholar]
  12. Q.M. Shao, Cramér-type large deviation for Student's t statistic. J. Theorect. Probab. 12 (1999) 387–398. [Google Scholar]
  13. V.H. De La Pena, M.J. Klass and T.L. Lai, Self-normalized processes: exponential inequalities, moment bound and iterated logarithm laws. Ann. Probab. 32 (2004) 1902–1933. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Vardemaele and N. Veraverbeke, Cramer type large deviations for studentized U-statistics. Metrika 32 (1985) 165–180. [CrossRef] [Google Scholar]
  15. Q. Wang, Bernstein type inequalities for degenerate U-statistics with applications. Ann. Math. Ser. B 19 (1998) 157–166. [Google Scholar]
  16. Q. Wang, B.-Y. Jing and L. Zhao, The Berry-Esséen bound for studentized statistics. Ann. Probab. 28 (2000) 511–535. [CrossRef] [MathSciNet] [Google Scholar]
  17. Q. Wang and N.C. Weber, Exact convergence rate and leading term in the central limit theorem for U-statistics. Statist. Sinica 16 (2006) 1409–1422. [MathSciNet] [Google Scholar]
  18. L. Zhao, The rate of the normal approximation for a studentized U-statistic. Science Exploration 3 (1983) 45–52. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.