Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 41 - 68
DOI https://doi.org/10.1051/ps/2009004
Published online 05 January 2012
  1. H. Akaike, Information theory and an extension of the maximum likelihood principle, in Second International Symposium on Information Theory (Tsahkadsor, 1971), Akadémiai Kiadó, Budapest (1973) 267–281.
  2. S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res. (2008) (to appear).
  3. J.D. Banfield and A.E. Raftery, Model-based Gaussian and non-Gaussian clustering. Biometrics 49 (1993) 803–821. [CrossRef] [MathSciNet]
  4. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Prob. Th. Re. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet]
  5. J.-P. Baudry, Clustering through model selection criteria. Poster session at One Day Statistical Workshop in Lisieux. http://www.math.u-psud.fr/ baudry, June (2007).
  6. C. Biernacki, G. Celeux and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Analy. Mach. Intell. 22 (2000) 719–725. [CrossRef]
  7. C. Biernacki, G. Celeux, G. Govaert and F. Langrognet, Model-based cluster and discriminant analysis with the mixmod software. Comput. Stat. Data Anal. 51 (2006) 587–600. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  8. L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. 3 (2001) 203–268. [CrossRef] [MathSciNet]
  9. L. Birgé and P. Massart, A generalized Cp criterion for Gaussian model selection. Prépublication n° 647, Universités de Paris 6 et Paris 7 (2001).
  10. L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Prob. Th. Rel. Fields 138 (2007) 33–73.
  11. L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam. Springer, New York (1997) 55–87.
  12. C. Bouveyron, S. Girard and C. Schmid, High-Dimensional Data Clustering. Comput. Stat. Data Anal. 52 (2007) 502–519. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  13. K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York, 2nd edition (2002).
  14. G. Castellan, Modified Akaike's criterion for histogram density estimation. Technical report, Université Paris-Sud 11 (1999).
  15. G. Castellan, Density estimation via exponential model selection. IEEE Trans. Inf. Theory 49 (2003) 2052–2060. [CrossRef] [MathSciNet]
  16. G. Celeux and G. Govaert, Gaussian parsimonious clustering models. Pattern Recogn. 28 (1995) 781–793. [CrossRef]
  17. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc, Ser. B. 39 (1977) 1–38.
  18. C.R. Genovese and L. Wasserman, Rates of convergence for the Gaussian mixture sieve. Ann. Stat. 28 (2000) 1105–1127. [CrossRef]
  19. S. Ghosal and A.W. van der Vaart, Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities. Ann. Stat. 29 (2001) 1233–1263. [CrossRef]
  20. C. Keribin, Consistent estimation of the order of mixture models. Sankhyā. The Indian Journal of Statistics. Series A 62 (2000) 49–66. [MathSciNet]
  21. M.H. Law, M.A.T. Figueiredo and A.K. Jain, Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1154–1166. [CrossRef] [PubMed]
  22. E. Lebarbier, Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Proc. 85 (2005) 717–736. [CrossRef]
  23. V. Lepez, Potentiel de réserves d'un bassin pétrolier: modélisation et estimation. Ph.D. thesis, Université Paris-Sud 11 (2002).
  24. P. Massart, Concentration inequalities and model selection. Springer, Berlin (2007). Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23 (2003).
  25. C. Maugis, Sélection de variables pour la classification non supervisée par mélanges gaussiens. Applications à l'étude de données transcriptomes. Ph.D. thesis, University Paris-Sud 11 (2008).
  26. C. Maugis, G. Celeux and M.-L. Martin-Magniette, Variable Selection for Clustering with Gaussian Mixture Models. Biometrics (2008) (to appear).
  27. C. Maugis and B. Michel, Slope heuristics for variable selection and clustering via Gaussian mixtures. Technical Report 6550, INRIA (2008).
  28. A.E. Raftery and N. Dean, Variable Selection for Model-Based Clustering. J. Am. Stat. Assoc. 101 (2006) 168–178. [CrossRef] [MathSciNet]
  29. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464. [NASA ADS] [CrossRef] [MathSciNet]
  30. D. Serre, Matrices. Springer-Verlag, New York (2002).
  31. M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math., Inst. Hautes Étud. Sci. 81 (1995) 73–205.
  32. M. Talagrand, New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505–563. [CrossRef] [MathSciNet]
  33. F. Villers, Tests et sélection de modèles pour l'analyse de données protéomiques et transcriptomiques. Ph.D. thesis, University Paris-Sud 11 (2007).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.