Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 217 - 232
DOI https://doi.org/10.1051/ps/2009015
Published online 05 January 2012
  1. J. Baik and T.M. Suidan, A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. (2005) 325–337. [CrossRef] [Google Scholar]
  2. Yu. Baryshnikov, GUEs and queues. Probab. Theory Relat. Fields 119 (2001) 256–274. [CrossRef] [Google Scholar]
  3. G. Ben Arous, A. Dembo and A. Guionnet, Aging of spherical spin glasses. Probab. Theory Relat. Fields 120 (2001) 1–67. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Ben Arous and A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108 (1997) 517–542. [CrossRef] [Google Scholar]
  5. T. Bodineau and J. Martin, A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105–112 (electronic). [Google Scholar]
  6. L. Breiman, Probability, Classics in Applied Mathematics 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). Corrected reprint of the 1968 original. [Google Scholar]
  7. D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probability 1 (1973) 19–42. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Chatterjee, A simple invariance theorem. Preprint arXiv:math.PR/0508213 (2005). [Google Scholar]
  9. S. Csörgő and P. Hall, The Komlós-Major-Tusnády approximations and their applications. Austral. J. Statist. 26 (1984) 189–218. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Davis, On the Lp norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976) 697–704. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Féral, On large deviations for the spectral measure of discrete coulomb gas, in Séminaire de Probabilités, XLI. Lecture Notes in Math. 1934. Springer, Berlin (2008) 19–50. [Google Scholar]
  12. D.H. Fuk, Certain probabilistic inequalities for martingales. Sibirsk. Mat. Ž. 14 (1973) 185–193, 239. [MathSciNet] [Google Scholar]
  13. D.H. Fuk and S.V. Nagaev, Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen. 16 (1971) 660–675. [MathSciNet] [Google Scholar]
  14. J. Gravner, C.A. Tracy and H. Widom, Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Statist. Phys. 102 (2001) 1085–1132. [CrossRef] [MathSciNet] [Google Scholar]
  15. K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 (1998) 151–204. [CrossRef] [MathSciNet] [Google Scholar]
  16. K. Johansson, Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437–476. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrscheinlichkeitstheor. und Verw. Geb. 34 (1976) 33–58. [CrossRef] [Google Scholar]
  18. W. König, Orthogonal polynomial ensembles in probability theory. Prob. Surveys 2 (2005) 385–447 (electronic). [CrossRef] [Google Scholar]
  19. M. Ledoux, Deviation inequalities on largest eigenvalues, in Geometric aspects of functional analysis. Lecture Notes in Math. 1910 (2007) 167–219. [CrossRef] [Google Scholar]
  20. M. Ledoux and B. Rider, Small deviations for beta ensembles. Preprint (2010). [Google Scholar]
  21. M.L. Mehta, Random matrices, 2nd edition. Academic Press Inc., Boston, MA (1991). [Google Scholar]
  22. T. Mikosch and A.V. Nagaev, Large deviations of heavy-tailed sums with applications in insurance. Extremes 1 (1998) 81–110. [CrossRef] [MathSciNet] [Google Scholar]
  23. N. O’Connell and M. Yor, A representation for non-colliding random walks. Electron. Commun. Probab. 7 (2002) 1–12 (electronic). [Google Scholar]
  24. D.l Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293, 3rd edition,. Springer-Verlag, Berlin (1999). [Google Scholar]
  25. E.B. Saff and V. Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 316. Springer-Verlag, Berlin (1997). Appendix B by Thomas Bloom. [Google Scholar]
  26. A.I. Sakhanenko, A new way to obtain estimates in the invariance principle, in High dimensional probability, II (Seattle, WA, 1999), Progr. Probab. 47. Birkhäuser Boston, Boston, MA (2000) 223–245. [Google Scholar]
  27. S. Sawyer, A remark on the Skorohod representation. Z. Wahrscheinlichkeitstheor. und Verw. Geb. 23 (1972) 67–74. [CrossRef] [Google Scholar]
  28. A.V. Skorokhod, Studies in the theory of random processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass (1965). [Google Scholar]
  29. T. Suidan, A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A 39 (2006) 8977–8981. [CrossRef] [MathSciNet] [Google Scholar]
  30. C.A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel. Phys. Lett. B 305 (1993) 115–118. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.