Free Access
Issue
ESAIM: PS
Volume 14, 2010
Page(s) 53 - 64
DOI https://doi.org/10.1051/ps:2008023
Published online 26 March 2010
  1. F.G. Ball, The threshold behaviour of epidemic models. J. Appl. Probab. 20 (1983) 227–241. [CrossRef] [MathSciNet] [Google Scholar]
  2. F.G. Ball and P. Donnelly, Strong approximations for epidemic models. Stoch. Proc. Appl. 55 (1995) 1–21. [CrossRef] [Google Scholar]
  3. A.D. Barbour and M. Kafetzaki, A host–parasite model yielding heterogeneous parasite loads. J. Math. Biol. 31 (1993) 157–176. [MathSciNet] [PubMed] [Google Scholar]
  4. A.D. Barbour and S. Utev, Approximating the Reed-Frost epidemic process. Stoch. Proc. Appl. 113 (2004) 173–197. [CrossRef] [Google Scholar]
  5. M.S. Bartlett, An introduction to stochastic processes. Cambridge University Press (1956). [Google Scholar]
  6. O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases. Wiley, New York (2000). [Google Scholar]
  7. J.A.P. Heesterbeek, R0. CWI, Amsterdam (1992). [Google Scholar]
  8. D.G. Kendall, Deterministic and stochastic epidemics in closed populations. Proc. Third Berk. Symp. Math. Stat. Probab. 4 (1956) 149–165. [Google Scholar]
  9. T.G. Kurtz, Limit theorems and diffusion approximations for density dependent Markov chains. Math. Prog. Study 5 (1976) 67–78. [Google Scholar]
  10. T.G. Kurtz, Approximation of population processes, volume 36 of CBMS-NSF Regional Conf. Series in Appl. Math. SIAM, Philadelphia (1981). [Google Scholar]
  11. C.J. Luchsinger, Stochastic models of a parasitic infection, exhibiting three basic reproduction ratios. J. Math. Biol. 42 (2002) 532–554. [CrossRef] [Google Scholar]
  12. C.J. Luchsinger, Approximating the long-term behaviour of a model for parasitic infection. J. Math. Biol. 42 (2002) 555–581. [CrossRef] [Google Scholar]
  13. P. Whittle, The outcome of a stochastic epidemic – a note on Bailey's paper. Biometrika 42 (1955) 116–122. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.