Free Access
Volume 14, 2010
Page(s) 299 - 314
Published online 29 October 2010
  1. A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Relat. Fields 116 (2000) 151–180. [CrossRef] [Google Scholar]
  2. J.M. Bardet, P. Doukhan, G. Lang and N. Ragache, Dependent Linderberg central limit theorem and some applications. ESAIM: PS 12 (2008) 154–172. [CrossRef] [EDP Sciences] [Google Scholar]
  3. H.C.P. Berbee, Random walks with stationary increments and renewal theory. Math. Centre Tracts 112, Amsterdam (1979). [Google Scholar]
  4. P. Collet, S. Martinez and B. Schmitt, Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory. Relat. Fields 123 (2002) 301–322. [Google Scholar]
  5. C. Coulon-Prieur and P. Doukhan, A triangular CLT for weakly dependent sequences. Statist. Probab. Lett. 47 (2000) 61–68. [Google Scholar]
  6. D. Dacunha-Castelle and M. Duflo, Problèmes à temps mobile. Deuxième édition. Masson (1993). [Google Scholar]
  7. J. Dedecker and C. Prieur, New dependence coefficients, Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203–236. [CrossRef] [Google Scholar]
  8. J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak dependence: With Examples and Applications. Lect. Notes in Stat. 190. Springer, XIV (2007). [Google Scholar]
  9. C. Deniau, G. Oppenheim and M.C. Viano, Estimation de paramètre par échantillonnage aléatoire. (French. English summary) [Random sampling and parametric estimation]. C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 565–568. [Google Scholar]
  10. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313–342. [Google Scholar]
  11. N. Guillotin-Plantard and D. Schneider, Limit theorems for sampled dynamical systems. Stoch. Dynamics 3 (2003) 477–497. [CrossRef] [Google Scholar]
  12. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119–140. [CrossRef] [MathSciNet] [Google Scholar]
  13. I.A. Ibragimov, Some limit theorems for stationary processes. Theory Probab. Appl. 7 (1962) 349–382. [Google Scholar]
  14. J.F.C. Kingman, The ergodic theory of subadditive stochastic processes. J. R. Statist. Soc. B 30 (1968) 499–510. [Google Scholar]
  15. M. Lacey, On weak convergence in dynamical systems to self-similar processes with spectral representation. Trans. Amer. Math. Soc. 328 (1991) 767–778. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Lacey, K. Petersen, D. Rudolph and M. Wierdl, Random ergodic theorems with universally representative sequences. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 353–395. [Google Scholar]
  17. A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481–488. [Google Scholar]
  18. F. Merlevède and M. Peligrad, On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. Birkhäuser, Boston (2002), pp. 171–193. [Google Scholar]
  19. T. Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Jpn 46 (1994) 309–343. [CrossRef] [Google Scholar]
  20. M. Peligrad and S. Utev, Central limit theorem for linear processes. Ann. Probab. 25 (1997) 443–456. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35–61. [Google Scholar]
  22. M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43–47. [Google Scholar]
  23. Y.A. Rozanov and V.A. Volkonskii, Some limit theorems for random functions I. Theory Probab. Appl. 4 (1959) 178–197. [CrossRef] [Google Scholar]
  24. C.J. Stone, On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist. Probab. Univ. Californie (1966), pp. 217–224. [Google Scholar]
  25. S.A. Utev, Central limit theorem for dependent random variables. Probab. Theory Math. Statist. 2 (1990) 519–528. [Google Scholar]
  26. S.A. Utev, Sums of random variables with Formula -mixing. Siberian Adv. Math. 1 (1991) 124–155. [Google Scholar]
  27. C.S. Withers, Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete 57 (1981) 509–534 (corrigendum in Z. Wahrsch. Verw. Gebiete 63 (1983) 555). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.