Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 1 - 14
DOI https://doi.org/10.1051/ps:2007055
Published online 21 February 2009
  1. I.S. Abramson, On bandwidth variation in kernel estimates – a square root law. Ann. Statist. 10 (1982) 1217–1223. [CrossRef] [MathSciNet] [Google Scholar]
  2. I.S. Abramson, Adaptive density flattening-metric distortion principle for combining bias in nearest neighbor methods. Ann. Statist. 12 (1984) 880–886. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.R. Barron, L. Györfi and E.C. van der Meulen, Distribution Estimation Consistent in Total Variation and in Two Types of Information Divergence. IEEE Trans. Inf. Theory 38 (1992) 1437–1453. [CrossRef] [Google Scholar]
  4. A. Berlinet, Hierarchies of higher order kernels. Prob. Theory Related Fields 94 (1993) 489–504. [CrossRef] [Google Scholar]
  5. B.L. Granovsky and H.-G. Müller, Optimizing kernel methods: a unifying variational principle. Ins. Statist. Rev. 59 (1991) 373–388. [CrossRef] [Google Scholar]
  6. P. Hall, On the bias of variable bandwidth curve estimators. Biometrika 77 (1990) 529–535. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Hall and J.S. Marron, Variable window width kernel estimates of a probability density. Prob. Theory Related Fields 80 (1988) 37–49. [CrossRef] [Google Scholar]
  8. N.L. Hjort and I.K. Glad, Nonparametric density estimation with a parametric start. Ann. Statist. 23 (1995) 882–904. [CrossRef] [MathSciNet] [Google Scholar]
  9. N.L. Hjort and M.C. Jones, Locally parametric nonparametric density estimation. Ann. Statist. 24 (1996) 1619–1647. [CrossRef] [MathSciNet] [Google Scholar]
  10. M.C. Jones, Variable kernel density estimates variable kernel density estimates. Aust. J. Statist. 32 (1990) 361–371. Correction 33 (1991) 119. [CrossRef] [Google Scholar]
  11. M.C. Jones, O.B. Linton and J.P. Nielsen, A simple bias reduction method for density estimation. Biometrika 82 (1995) 327–38. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.C. Jones, I.J. McKay and T.-C. Hu, Variable location and scale kernel density estimation. Inst. Statist. Math. 46 (1994) 521–535. [Google Scholar]
  13. I. McKay, A note on bias reduction in variable kernel density estimates. Can. J. Statist. 21 (1993) 367–375. [CrossRef] [Google Scholar]
  14. J.S. Marron and M.P. Wand, Exact mean integrated squared error. Ann. Statist. 20 (1992) 712–736. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.P. Nielson and O. Linton, A multiplicative bias reduction method for nonparametric regression. Statist. Probab. Lett. 19 (1994) 181–187. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832–837. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Stute, A law of iterated logarithm for kernel density estimators. Ann. Probab. 10 (1982) 414–422. [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Terrel and D. Scott, On improving convergence rates for non-negative kernel density estimators. Ann. Statist. 8 (1980) 1160–1163. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.P. Wand and M.C. Jones, Kernel Smoothing. Chapman and Hall, London (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.