Free Access
Volume 13, January 2009
Page(s) 1 - 14
Published online 21 February 2009
  1. I.S. Abramson, On bandwidth variation in kernel estimates – a square root law. Ann. Statist. 10 (1982) 1217–1223. [CrossRef] [MathSciNet]
  2. I.S. Abramson, Adaptive density flattening-metric distortion principle for combining bias in nearest neighbor methods. Ann. Statist. 12 (1984) 880–886. [CrossRef] [MathSciNet]
  3. A.R. Barron, L. Györfi and E.C. van der Meulen, Distribution Estimation Consistent in Total Variation and in Two Types of Information Divergence. IEEE Trans. Inf. Theory 38 (1992) 1437–1453. [CrossRef]
  4. A. Berlinet, Hierarchies of higher order kernels. Prob. Theory Related Fields 94 (1993) 489–504. [CrossRef]
  5. B.L. Granovsky and H.-G. Müller, Optimizing kernel methods: a unifying variational principle. Ins. Statist. Rev. 59 (1991) 373–388. [CrossRef]
  6. P. Hall, On the bias of variable bandwidth curve estimators. Biometrika 77 (1990) 529–535. [CrossRef] [MathSciNet]
  7. P. Hall and J.S. Marron, Variable window width kernel estimates of a probability density. Prob. Theory Related Fields 80 (1988) 37–49. [CrossRef]
  8. N.L. Hjort and I.K. Glad, Nonparametric density estimation with a parametric start. Ann. Statist. 23 (1995) 882–904. [CrossRef] [MathSciNet]
  9. N.L. Hjort and M.C. Jones, Locally parametric nonparametric density estimation. Ann. Statist. 24 (1996) 1619–1647. [CrossRef] [MathSciNet]
  10. M.C. Jones, Variable kernel density estimates variable kernel density estimates. Aust. J. Statist. 32 (1990) 361–371. Correction 33 (1991) 119. [CrossRef]
  11. M.C. Jones, O.B. Linton and J.P. Nielsen, A simple bias reduction method for density estimation. Biometrika 82 (1995) 327–38. [CrossRef] [MathSciNet]
  12. M.C. Jones, I.J. McKay and T.-C. Hu, Variable location and scale kernel density estimation. Inst. Statist. Math. 46 (1994) 521–535.
  13. I. McKay, A note on bias reduction in variable kernel density estimates. Can. J. Statist. 21 (1993) 367–375. [CrossRef]
  14. J.S. Marron and M.P. Wand, Exact mean integrated squared error. Ann. Statist. 20 (1992) 712–736. [CrossRef] [MathSciNet]
  15. J.P. Nielson and O. Linton, A multiplicative bias reduction method for nonparametric regression. Statist. Probab. Lett. 19 (1994) 181–187. [CrossRef] [MathSciNet]
  16. M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832–837. [CrossRef] [MathSciNet]
  17. W. Stute, A law of iterated logarithm for kernel density estimators. Ann. Probab. 10 (1982) 414–422. [CrossRef] [MathSciNet]
  18. G. Terrel and D. Scott, On improving convergence rates for non-negative kernel density estimators. Ann. Statist. 8 (1980) 1160–1163. [CrossRef] [MathSciNet]
  19. M.P. Wand and M.C. Jones, Kernel Smoothing. Chapman and Hall, London (1995).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.