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ASYMPTOTIC UNBIASED DENSITY ESTIMATORS
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Abstract. This paper introduces a computationally tractable density estimator that has the same
asymptotic variance as the classical Nadaraya-Watson density estimator but whose asymptotic bias is
zero. We achieve this result using a two stage estimator that applies a multiplicative bias correction to
an oversmooth pilot estimator. Simulations show that our asymptotic results are available for samples
as low as n = 50, where we see an improvement of as much as 20% over the traditionnal estimator.
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Introduction

Under classical regularity conditions, the kernel density estimators from an i.i.d. n-sample from a distribution
F with twice continuously differentiable densities f satisfy a central limit theorem with bandwidths of order
hn = cn−1/5 √

nhn

⎛⎝ 1
n

n∑
j=1

1
hn

K

(
Xj − x

hn

)
− f(x)

⎞⎠ =⇒ N (b(x), σ2(x)), (1)

with asymptotic bias and variance

b(x) =
c5/2

2
f ′′(x)

∫
u2K(u)du and σ2(x) = f(x)

(∫
K2(u)du

)
,

respectively. See for example the book of Wand and Jones [19]. This theorem is used to justify the practice of
drawing pointwise 2σ confidence intervals about the estimated density. While suggestive, these intervals do not
account for the asymptotic bias b(x). When the bias is non-zero, the resulting asymptotic coverage probability
is less than the claimed 95%. This motivates our interest in density estimators whose bias is zero.

Estimators having zero asymptotic bias are not trivial. Rosenblatt [16] showed that if the considered class of
densities is rich enough (which is typically the case in classical nonparametric density estimation), there does
not exist unbiased density estimators for any finite sample n. Nevertheless, it is possible that asymptotically,
the scaled bias

√
nhn

(
�

[
f̂n(x)

]
− f(x)

)
converges to zero. Examples of the latter are kernel estimators with
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small bandwidth sequence hn = o(n−1/5). But because in such instances, n−2/5
√

nhn −→ ∞, these estimators
do not converge at the optimal rate and the resulting confidence intervals will be too wide.

Many methods, starting with the variable bandwidth estimators of Abrahamson [1], have attempted to reduce
the asymptotic bias. The strategy of these estimators is to use a larger bandwidth in low density areas and
smaller bandwidths in high density areas. The result is that for four times differentiable densities, the bias is of
order O(h4) instead of the usual O(h2). The variance, while larger, remains of order O((nh)−1). The interested
reader about variable bandwidth kernel estimators is referred to Abramson [2], Hall and Marron [7], Hall [6],
Jones [10], Jones et al. [12].

Higher order kernels achieve a similar reduction in bias under the same assumption and were studied by
Granovsky and Müller [5], Marron and Wand [14], and Berlinet [4]. Other methods estimate adjustments to the
estimated density to reduce the bias. For example, McKay [13] considers additive bias corrections to the density
while Terell and Scott [18] apply the additive bias correction to the logdensity. Jones et al. [11], extending an
idea of Nielson and Linton [15], estimate directly a multiplicative adjustment to the density.

However, the bandwidth sequence hn = cn−1/5 that is optimal for twice differentiable densities, significantly
undersmooths densities assumed to be four times differentiable, an assumption made throughout the bias reduc-
tion literature. As a result, the resulting density estimators converge at a sub-optimal rate given the smoothness
assumptions.

Finally, Hjort and Glad [8] and Hjort and Jones [9] have studied a multiplicative adjustment to a parametric
family of densities. These estimators are unbiased when the true density belongs to the parametric family,
and has smaller bias than the kernel estimator in a neighborhood of the parametric family while maintaining
the same variance. Their result is important because they show how to decrease, or even eliminate, the bias
without altering the smoothness assumptions made on the true density, changing the convergence rate, or even
increasing the variance of the estimator.

This paper considers simple kernel based density estimators that are both rate-optimal and have, for every
fixed density f , zero asymptotic bias. The major contribution is the introduction of a two stage estimator
that corrects the bias without affecting the asymptotic variance, and this, without having to assume additional
smoothness on the density. Pointwise confidence intervals based on these estimators have asymptotically the
claimed coverage probability and their width converge to zero at the optimal rate.

1. Asymptotic unbiased density estimators

1.1. Higher order kernel estimators

We start this section by giving an example of a density estimate that converges at the optimal rate and for
which the asymptotic bias

√
nhn

(
�

[
f̂n(x)

]
− f(x)

)
→ 0. Let X1, . . . , Xn, be an n-sample from an unknown

distribution F with twice differentiable density f . Consider the kernel density estimator

f̂(x) =
1
n

n∑
j=1

Kh(x − Xj),

where Kh(u) = (1/h)K(u/h). While it is usual to match the order of the kernel with the number of assumed
derivatives of the density f , one can obtain asymptotically unbiased density estimators by using a higher order
kernel. The usual bias-variance calculations for twice differentiable densities yield

�[f̂(x) − f(x)] =
∫

K(u) {f(x − hu) − f(x)}du =
h2

2

∫
u2K(u)f ′′(ξu)du (2)

for some ξu ∈ (x, x − hu), and

Var(f̂(x)) =
{

f(x)
nh

∫
K2(u)du − f(x)2

n

}
(1 + o(h)).
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If the density is twice continuously differentiable and K(·) compactly supported, an application of the dominated
convergence theorem shows that the bias is 2−1h2f ′′(x)

∫
u2K(u)du(1 + o(1)) for second order kernels, and

h2o(1) for higher order kernels. Further, this estimator is asymptotically Normal with mean zero and variance
f(x)

∫
K(u)2du.

Higher order kernels present an alternative to reducing the bandwidth with aim to get asymptotically unbiased
density estimates. However Proposition 5.1 in the Appendix shows that the variance of the density estimator
increases with the order of the kernels. Further, the estimator can take on negative values. These shortcomings
are overcome in the next section.

1.2. Two-step kernel estimator

This section introduces a multiplicative adjustment to a pilot kernel estimator that reduces the bias without,
asymptotically, changing the variance. Our two-stage density estimator is computed as follows: First compute
a pilot kernel estimator for the density

f̃(x) =
1
n

n∑
j=1

Kh0(Xj − x),

where Kh(u) = (1/h)K(u/h). Second, estimate the ratio α(x) = f(x)/f̃(x) by

α̂(x) =
1
n

n∑
j=1

Kh1(Xj − x)
1

f̃(Xj)
· (3)

Multiplying the pilot estimator f̃(x) by α̂(x) produces

f̂(x) =
1
n

n∑
j=1

Kh1(Xj − x)
f̃(x)

f̃(Xj)
· (4)

Remark that in the limit as h0 goes to infinity, we have limh0→∞ f̃(x)/f̃(Xj) = 1, so that estimator (4) becomes
the usual Nadaraya-Watson kernel density estimator.

The idea of multiplicative bias reduction is not new. Hjort and Glad [8] showed that if f̃ = fθ̂ is an estimated
density from the parametric family FΘ = {fθ : θ ∈ Θ}, then f̂ has no bias if the true density belongs to FΘ,
and has smaller bias than the kernel density estimator for all densities in a neighborhood of FΘ. Because the
pilot estimator converges to the true density, we expect the bias to converge to zero. If the pilot estimator
oversmooths, i.e. n1/5−εh0 → ∞, we expect the contribution to the variance of the estimator (4) from the
pilot estimator to be of smaller magnitude than the contribution to the variance from multiplicative adjustment
α̂(x). Assuming the density has four continuous derivatives, Jones et al. [11] proposed the estimator (4) with
h0 = h1 = c · n−1/9 and showed that the bias is of order O(h4), instead of O(h2).

Our estimator also reduces the bias, but without requiring additional smoothness assumptions on the density
nor increasing the asymptotic variance. Our results and proofs are completely different from the above referenced
work, and rest on a representation theorem that we prove under the following assumptions:
K1. The kernel K(·) is a bounded symmetric probability density function.
K2. The kernel K(·) vanishes outside the interval [−1, 1] and, for any 0 < ε < 1,

inf {K(u) : u ∈ [−1 + ε, 1 − ε]} > 0.

K3. The squared L2−norm ‖K‖2
2 =

∫
K2(u)du and second moment σ2

K =
∫

u2K(u)du are finite.



4 N.W. HENGARTNER AND E. MATZNER-LØBER

Theorem 1.1. Assume that the kernel K(·) satisfies conditions (K1)–(K3). Denote by f̄(x) = �[f̃(x)] the
expected value of the pilot estimator. If the bandwidths h0, h1 satisfy

h� → 0, nh�/ logn → ∞ for � = 0, 1,

then

f̂(x) =
1
n

n∑
j=1

Kh1(Xj − x)
f̄(x)

f̄(Xj)
+ Op

(√
log n

nh0

)
·

Remark 1. Under assumption (K1), the expected Nadaraya-Watson density estimator f̄ is a genuine density.

Remark 2. The ratio f̄(x)/f̄(Xj) is equal or bigger than zero by assumption K1 and bounded away from
infinity.

Section 3 is devoted to proving this theorem. Armed with this representation theorem, we can apply the
results of Hjort and Glad [8], replacing fo(x) (respectively fo(Xj)) by f̄(x) (resp. f̄(Xj)). For completeness,
we state the results of Hjort and Glad [8] in the next lemma.

Lemma 1.2 (Hjort and Glad). Assume the kernel K(·) satisfies conditions (K1) and (K2). Given any fixed
density fo(x) for which the ratio r(x) = f(x)/fo(x) is twice continuously differentiable, the estimator

f̂(x) =
1
n

n∑
j=1

1
h

Kh (Xj − x)
fo(x)

fo(Xj)

has bias

�

[
f̂(x)

]
− f(x) =

σ2
K

2
fo(x)r′′(x)h2(1 + o(1))

and variance

Var
(
f̂(x)

)
=
(

f(x)‖K‖2
2

nh
− f(x)2

n

)
(1 + o(h)).

Remark 3. If h = c · n−1/5, then the Lindeberg conditions are readily verified and f̂(x) satisfies the central
limit theorem

√
nh
(
f̂(x) − f(x)

)
=⇒ N (bo(x), σ2(x))

with

bo(x) = c5/2 σ2
K

2
fo(x)r′′(x) and σ2(x) = f(x)‖K‖2

2.

Remark 4. The variance of f̂(x) is the same as the variance of the kernel density estimator while the bias of
f̂(x) is smaller whenever r′′(x) < f ′′(x).

If the bandwidth h0 of the pilot estimator converges to zero such that log n/nh0 = o(min(h4
1, 1/nh1)), then

n−1
∑n

j=1 Kh1(Xj −x)
(
f̄(x)/f̄(Xj)

)
is the dominant term of f̂(x). When f is twice continuously differentiable,

f̄(x), f̄ ′(x) and f̄ ′′(x) converge to f(x), f ′(x) and f ′′(x), respectively. Therefore the bias of f̂(x), which is
proportional to

(
f(x)/f̄(x)

)′′, converges to zero. Without further assumptions on the smoothness of the true
underlying density, we can not quantify how fast the asymptotic bias converges to zero. If we are willing to



ASYMPTOTIC UNBIASED DENSITY ESTIMATORS 5

assume that the density f has three continuous derivatives, then the asymptotic bias is of order O(h1), and if
f has four continuous derivatives, then the asymptotic bias will be of order O(h2

1). Smoothness beyond four
derivatives does not change the order of the asymptotic bias.

We are now ready to state the main theorem of this paper.

Theorem 1.3. Assume the smoothing kernel K(·) satisfies conditions (K1)-(K3). Let h1 = c · n−1/5 and
h0 = c · n−α for 0 < α < 1/5. If the density f is twice continuously differentiable, then the two step density
estimator (4) satisfies the central limit theorem

n2/5
(
f̂(x) − f(x)

)
=⇒ N (0, σ2(x)),

with

σ2(x) = f(x)‖K‖2
2.

Remark 5. Kernel density estimators with bandwidths of order O(n−α) for 0 < α < 1/5 are oversmoothing the
true density, and as a result, they have biases that are of larger order of magnitude than their standard deviations.
Thus, we conclude that the multiplicative adjustment performs a bias reduction on the pilot estimator.

Remark 6. The asymptotic variances of the two step estimator and the usual kernel density estimator are the
same. However, for finite samples, the two step kernel smoother can have a slightly larger variance depending
on choice of the bandwidth h0.

Corollary 1.4. Assume that the smoothing kernel K(·) satisfies assumptions (K1)–(K3). Let z1−α/2 be the
1 − α/2 quantile of a standard Normal and set ν2 =

∫
K2(u)du. If f is twice continuously differentiable, then

for every fixed x

lim
n→∞ IPf

[
f̂(x) − z1−α/2 · ν

n2/5

√
f̂(x) ≤ f ≤ f̂(x) +

z1−α/2 · ν
n2/5

√
f̂(x)

]
= 1 − α.

2. Extensions

2.1. Higher order kernel smoothers

Higher order kernels take advantage of higher order derivatives of the density to reduce the bias by orders of
magnitude. This also holds for the estimator considered in Lemma 1.2, that is, if the ratio r(x) = f(x)/fo(x)
is s-times continuously differentiable and K [s](·) is a kernel of order s, then the estimator

f̂(x) =
1
n

n∑
j=1

1
h

K [s]

(
Xj − x

h

)
fo(x)

fo(Xj)

has bias

�

[
f̂(x)

]
− f(x) =

fo(x)
s!

{∫
usK [s](u)du

}
r(s)(x)hs(1 + o(1))

and variance

Var
(
f̂(x)

)
=

f(x)
∫

K [s](u)2du

nh
− f(x)

n
·
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Thus, we can extend Theorem 1.3 to this setting to show that the estimator f̂(x)

f̂(x) =

⎧⎨⎩ 1
n

n∑
j=1

K
[s]
h1

(Xj − x)
1

f̃(Xj)

⎫⎬⎭× f̃(x)

is asymptotic Normal with mean zero and variance f(x)
∫

K [s](u)2du, provided that h0 = n−α for some 0 <
α < 1/(1 + 2s). While the true density needs to be s times differentiable, we do not need to use a higher order
kernel for the pilot estimator.

2.2. The multivariate case

Multivariate kernel density estimators in Rp are of the form

f̂(x) =
1
n

n∑
j=1

KH(Xj − x)

where KH(u) = (1/ detH)K(H−1x) and H is a p × p invertible bandwidth matrix. For fixed multivariate
densities fo(x), the estimator

f̂(x) =
1
n

n∑
j=1

KH(Xj − x)
fo(x)

fo(Xj)
,

with H = diag(h), has bias

IE
[
f̂(x)

]
− f(x) =

h2fo(x)
2

p∑
k=1

∂2

∂x2
k

(
f(x)
fo(x)

)∫
u2

kK(u)du (1 + o(1))

and variance

Var
(
f̂(x)

)
=

f(x)
∫

K(u)2du

nh
(1 + o(1)).

Therefore if the bandwidth h0 of the pilot estimator is of order O(n−α); with 0 < α < 1/(4 + p), estimators of
the form (4) will have a Normal distribution with mean zero and variance f(x)

∫
K(u)2du.

3. Discussion

From the theory, we know that as soon as h0 is bigger than h1, the estimator (4) has smaller bias than the
classical kernel estimate. We conduct a simulation study in order to compare the finite sample performance of
our estimator with the classical one and to see how its performance depends on our choice for the bandwidth
h0 of the pilot estimator. In our simulations, we restricted the bandwidth of the multiplicative adjustment h1

to lie in a grid H and set the bandwidth of the pilot estimator h0 = ch1. Our theory discusses the case where
c > 1, but in order to explore the sensitivity of our two stage estimator on h0, we also considered some values
for c < 1. The bandwidth selection problem was avoided by doing a “best possible performance” assuming that
the true density f is known and for each h0 we obtain ĥ1 such as

ĥ1 = min
h1∈H

max
x∈G

|f̂(x) − f(x)|

where the maximum on x is taken on a grid G of 100 points equispaced in the range of Xi. Of course the true
bandwidth is unknown in practice but the simulations were done to verify that our estimator does well for finite
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Table 1. Median over 100 replications of ‖f̂(x)− f(x)‖∞ divide by ‖f̂NW (x)− f(x)‖∞ where
f̂NW (x) is Nadaraya-Watson estimator.

Density n h0 = 0.5ĥ1 h0 = 0.75ĥ1 h0 = ĥ1 h0 = 1.1ĥ1 h0 = 1.5ĥ1 h0 = 2ĥ1 h0 = 10ĥ1

Laplace

50 0.983 0.950 0.932 0.937 0.939 0.948 0.993
100 0.956 0.957 0.956 0.951 0.961 0.960 0.993
200 0.957 0.941 0.940 0.941 0.939 0.933 0.990
500 0.941 0.936 0.933 0.929 0.941 0.947 0.988

Gamma3

50 1.400 1.111 1.048 1.036 1.007 0.985 0.982
100 1.543 1.375 1.304 1.270 1.226 1.186 0.993
200 1.348 1.187 1.122 1.095 1.031 0.981 0.976
500 1.181 0.968 0.875 0.849 0.808 0.817 0.987

Gaussian

50 1.058 0.929 0.869 0.863 0.879 0.895 0.989
100 1.048 0.919 0.871 0.863 0.869 0.880 0.986
200 0.976 0.858 0.827 0.821 0.828 0.859 0.982
500 0.906 0.829 0.800 0.802 0.811 0.833 0.974
50 1.155 0.946 0.928 0.928 0.947 0.983 1

Bimodal 100 0.984 0.867 0.851 0.854 0.877 0.885 1
Gaussian 200 1.062 0.981 0.968 0.965 0.952 0.952 1.007

500 1.016 0.878 0.853 0.855 0.878 0.917 0.981

sample sizes. We tried n = 50, n = 100, n = 200 and n = 500 for different densities such as Laplace, Gamma,
Gaussian, Gaussian bimodal. The number of replication is 100. In each case, we calculate for each replication
the sup norm over the grid G

‖f̂(x) − f(x)‖∞,

and then calculate the median over 100 replications.
Table 1 presents the median over 100 replications of the ratio:

‖f̂(x) − f(x)‖∞
‖f̂NW (x) − f(x)‖∞

,

where f̂NW is the classical Nadaraya-Watson estimator. As predicted by Theorem 3, the sup norm of our
estimator was smaller than the sup norm for the classical Nadaraya estimator when c > 1 except for the
Gamma 3 density. The differences vary from 5% to 20% depending the sample size (the difference increases
with the sample size) and the type of densities. Interestingly, the performance of our estimator is not very
sensitive to the particular choice of the bandwidth of the pilot estimator h0.

We proposed a new density estimator which is positive everywhere, which reduces the bias and which is
simple to implement. We do not conduct any theory in order to choose the two bandwidths in a optimal way.
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Figure 1. The solid line represents the true density for the bimodale Gaussian.
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Figure 2. The solid line represents the true density for the Laplace.

The rule of thumb we proposed and which we try on others simulations which are not reported here, is the
following:

• use any data-driven choice method existing in the literature for the bandwidth as for example the one
proposed in the GNU-R library of KernSmooth of Wand [19] which gives ĥ1;

• apply our estimator with (ĥ0 = 1.5ĥ1, ĥ1).

We applied that simple rule to the same data sets and densities as above and improve often Nadaraya-Watson
estimator. The following pictures present, for the Laplace and Bimodal Gaussian density with n = 100 and
100 iterations, different estimators on a grid of points. In lines is the true density which is unknown. For every
point on a fixed grid, we plot, side by side, the median over 100 replications of our estimator at that point (left
side) and on the right side of that point the median over 100 replications of Nadaraya Watson estimator. We
add also the interquartile interval in order to see the fluctuations of the different estimators.

On both example, our estimator reduces the bias by increasing the peak and decreasing the valley (see the
circles) and the interquertile intervals look similar for both estimator as predicted by the theory.



ASYMPTOTIC UNBIASED DENSITY ESTIMATORS 9

4. Asymptotics: Proof of Theorem 1.1

Denote by f̄(x) = �[f̃(x)] the expected value of the pilot estimator and decompose (4) as follows:

f̂(x) =
1
n

n∑
j=1

Kh1(Xj − x)
f̄(x)

f̄ (Xj)

(
1 +

f̃(x) − f̄(x)
f̄(x)

)(
1 − f̃(Xj) − f̄(Xj)

f̃(Xj)

)

=
1
n

n∑
j=1

Kh1(Xj − x)
f̄(x)

f̄ (Xj)
+ S2(x) − S3(x) − S4(x),

where

S2(x) =
1
n

n∑
j=1

Kh1(Xj − x)

(
f̃(x) − f̄(x)

f̄(Xj)

)
, (5)

S3(x) =
1
n

n∑
j=1

Kh1(Xj − x)
f̄(x)

f̄(Xj)

(
f̃(Xj) − f̄(Xj)

f̃(Xj)

)
, (6)

and

S4(x) =
1
n

n∑
j=1

Kh1(Xj − x)
f̄(x)

f̄(Xj)

(
f̃(x) − f̄(x)

f̄(x)

)(
f̃(Xj) − f̄(Xj)

f̃(Xj)

)
· (7)

While these sums are local averages of
(
f̃(Xj) − f̄(Xj)

)
/f̃(Xj) and

∥∥∥f̃(Xj) − f̄(Xj)
∥∥∥
∞

is of order

Op

(
(log n/nh0)

−1/2
)

, care must be taken to ensure that dividing by f̃(Xj) will not unduly affect the magnitude
Sk(x). For densities uniformly bounded away from zero, Theorem 1.1 follows from the uniform convergence of
kernel estimators. Proposition 4.1 extends the result to arbitrary densities.

Proposition 4.1. If the kernel K(·) satisfies conditions (K2) then the two first moments of S2(x), S3(x) and
S4(x) are of order

� [S2(x) + S3(x) + S4(x)] = O

⎛⎝√ log(1/h0)
nh0

⎞⎠
and

�
[
S2(x)2 + S3(x)2 + S4(x)2

]
= O

(
log(1/h0)

nh0

)
·

Remark 7. Proposition 4.1 implies that

S2(x) + S3(x) + S4(x) = OP

⎛⎝√ log(1/h0)
nh0

⎞⎠ ·

Proof. By Theorem 1 of Stute [17], there exists a positive constant C0 depending on K and f , such that the
event

⎧⎨⎩sup
x

∣∣∣f̃(x) − f̄(x)
∣∣∣ ≤ C0

√
log 1

h0

nh0
for all but finitely many n

⎫⎬⎭
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has probability one. Thus, for large n,

S2(x) ≤ C0

√
log 1

h0

nh0

1
n

n∑
j=1

Kh1(Xj − x)
1

f̄ (Xj)
, (8)

S3(x) ≤ C0

√
log 1

h0

nh0

1
n

n∑
j=1

Kh1(Xj − x)
f̄(x)

f̄(Xj)f̃(Xj)
(9)

S4(x) ≤
⎛⎝C0

√
log 1

h0

nh0

⎞⎠2

1
n

n∑
j=1

Kh1(Xj − x)
1

f̄ (Xj)f̃(Xj)
· (10)

Direct calculations yield

� [S2(x)] = O

⎛⎝√ log 1
h0

nh0

⎞⎠ and �
[
S2(x)2

]
= O

(
log 1

h0

nh0
× 1

nh1

)
·

To bound S3(x) and S4(x), define N(X1) = #{k 	= 1 : |Xk − X1| ≤ h0/2} and 0 < c = inf{K(u) : |u| ≤ 1/2},
and note that

f̃(Xj) ≥ cN(Xj) + 1
nh0

≥ c

nh0
(N(Xj) + 1) .

By Lemma 5.2,

� [S3(x)] ≤ C1

√
log 1

h0

nh0
nh0�

[
Kh1(X1 − x)f̄ (x)

f̄(X1)
×�

[
1

N(X1) + 1

∣∣∣∣X1

]]
= C1

√
nh0 log

1
h0
�

[
1
h1

K

(
X1 − x

h1

)
f̄(x)

f̄(X1)
1

np̄(X1)

]
,

where

p̄(X1) =
∫ X1+h0/2

X1−h0/2

f(z)dz = h0f(X1) [1 + O(h0)] .

Hence

� [S3(x)] ≤ C3

√
log 1

h0

nh0
,

and similarly,

� [S4(x)] ≤ C4

log 1
h0

nh0
·

The second moment of S3(x) is bounded by

�
[
S3(x)2

] ≤ C2
0

log 1
h0

nh0
�

[
Kh1(X1 − x)Kh1(X2 − x)f̄(x)2

f̄(X1)f̃(X1)f̄(X2)f̃(X2)

]
(11)

+ C2
0

log 1
h0

nh0

1
n
�

⎡⎣(Kh1(X1 − x)f̄(x)

f̄(X1)f̃(X1)

)2
⎤⎦ · (12)
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The expectation in the right-hand side of (11) is bounded by

(nh0)
2

c2
�

[
Kh1(X1 − x)Kh1(X2 − x)

f̄(x)2

f̄(X1)f̄(X2)
(13)

× �
[

1
(N(X1) + 1)(N(X2) + 1)

∣∣∣∣X1, X2

]]
. (14)

Divide the (x1, x2) plane into the three regions: R1 = {(x1, x2) : |x1 − x2| ≥ 2}, R2 = {(x1, x2):
1 ≤ |x1 − x2| < 2} and R3 = {(x1, x2) : |x1 − x2| < 1}, and set N0(x1, x2) = # {k > 2 : Xk ∈ R3}. When
(X1, X2) ∈ R1, apply Lemma 5.2 to conclude that

�

[
1

(N(X1) + 1)(N(X2) + 1)

∣∣∣∣X1, X2

]
≤ C5

(nh0)
2

while for (X1, X2) ∈ R3, bound

1
(N(X1) + 1)(N(X2) + 1)

≤ 2
(N0(X1, X1) + 1)(N(X1, X2) + 1)

,

and apply Lemma 5.2 to get

�

[
1

(N(X1) + 1)(N(X2) + 1)

∣∣∣∣X1, X2

]
≤ C6

(nh0)
2 ·

Finally, for (X1, X2) ∈ R2, bound

1
(N(X1) + 1)(N(X2) + 1)

≤ 1
(N(X1) − N0(X1, X1) + 1)(N(X2) − N0(X1, X1) + 1)

and apply Lemma 5.2 to conclude that

�

[
1

(N(X1) + 1)(N(X2) + 1)

∣∣∣∣X1, X2

]
≤ C7

(nh0)
2 ·

These bounds and a change of variables in (13) shows that it is of order O(1), from which it follows that the
right-hand side of (11) is of order O(log(1/h0)/(nh0)).

Finally, bound (12) by

C0

log 1
h0

nh0

1
n
�

⎡⎣(Kh1(X1 − x)f̄(x)

f̄(X1)f̃(X1)

)2
⎤⎦ ≤ C8h0 log

1
h0
�

[(
Kh1(X1 − x)f̄(x)

f̄(X1)

)2

× �

[
1

(N(X1) + 1)(N(X1) + 2)

∣∣∣∣X1

]]
,

apply Lemma 5.2 and operate a change of variables to conclude that the latter is bounded by

C9

log 1
h0

nh · nh0
·

Hence

�
[
S3(x)2

]
= O

(
log 1

h0

nh0

)
·
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The expectation of S4(x)2 is similarly bounded, and the conclusion of Proposition 4.1 follows.

5. Appendix

Proposition 5.1. Assume that the smoothing kernel K(·) satisfyes assumptions (K1)-(K2) Denote by K [r](·)
the hierarchy of kernels generated by K(·). If s < r, then∫

K [s](u)2du <

∫
K [r](u)2du.

Remark 8. It immediately follows that within the same hierarchy, the variance of kernel density estimators is
monotone increasing in the order.

Proof. Let p�(u) be the orthonormal polynomials of order � in L2(K) and define as in Berlinet [4] the hierarchy
of higher order kernels by

K [r](u) =
r∑

�=0

p�(u)p�(0)K(u).

From the ortonormality of p�(u) follows the conclusion

∫
K [r](u)2du =

r∑
�=0

p�(0)2 >
s∑

�=0

p�(0)2 =
∫

K [s](u)2du.

Lemma 5.2. Let (N1, N2, N3) have a Multinomial(n; p1, p2, p3) distribution. Then

�

[
1

N1 + 1

]
=

1
(n + 1) p1

[
1 − (1 − p1)

n+1
]

(15)

and

�

[
1

(N1 + 1)(N2 + 1)

]
=

1 − (1 − p1)n+2 − (1 − p2)n+2 + [(1 − p1)(1 − p2)]n+2

p1p2(n + 1)(n + 2)
· (16)

Remark 9. The proof of (15) is also given in Barron et al. [3].

Remark 10. It follows that

�

[
1

N1 + 1

]
≤ 1

np1

and

�

[
1

(N1 + 1)(N2 + 1)

]
≤ 1

np1 · np2
·

It follows that

�

[
1

(N1 + 1)(N1 + 2)

]
≤ 1

n2p2
1

· �

Proof. With the identity (
n

k

)
1

k + 1
=
(

n + 1
k + 1

)
1

n + 1
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one shows that

�

[
1

N + 1

]
=

n∑
k=0

1
k + 1

(
n

k

)
pk
1(1 − p1)n−k

=
n∑

k=0

1
n + 1

(
n + 1
k + 1

)
pk
1(1 − p1)n−k

=
1

(n + 1) p1

n+1∑
k=1

(
n + 1

k

)
pk
1(1 − p1)n+1−k

=
1

(n + 1) p1

[
1 − (1 − p1)

n+1
]
.

Combining (16) and (15), the conditional expectation of N2 given N1 is

�

[
1

(N1 + 1)(N2 + 1)

]
= �

[
1

N1 + 1
�

[
1

N2 + 1

∣∣∣∣N1

]]
=

1 − p1

p2
�

⎡⎢⎣1 −
(
1 − p2

1−p1

)n−N1+1

(N1 + 1)(n − N1 + 1)

⎤⎥⎦ ·
With the identity

1
(k + 1)(n + 1 − k)

(
n

k

)
=

1
(n + 1)(n + 2)

(
n + 2
k + 1

)
,

a similar derivation to (15) gives

�

[
1

(N1 + 1)(N2 + 1)

]
=

1 − (1 − p1)n+2 − (1 − p2)n+2 + [(1 − p1)(1 − p2)]n+2

p1p2(n + 1)(n + 2)
· �
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