Free Access
Volume 13, January 2009
Page(s) 283 - 300
Published online 21 July 2009
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Appl. Math. Ser. 55. U.S. Government Printing Office, Washington, D.C. (1964). [Google Scholar]
  2. J. Andel, Local asymptotic power and efficiency of tests of Kolmogorov-Smirnov type. Ann. Math. Statist. 38 (1967) 1705–1725. [CrossRef] [MathSciNet] [Google Scholar]
  3. T.W. Anderson and D.A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Statist. 23 (1952) 193–212. [CrossRef] [Google Scholar]
  4. R. Courant and D. Hilbert, Methods of Mathematical Physics, volume I. Interscience Publishers, Inc., New York (1953). [Google Scholar]
  5. A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, volume II. Robert E. Krieger Publishing Co., Inc., Melbourne, FL (1981). [Google Scholar]
  6. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, sixth edition. Academic Press, San Diego (2000). [Google Scholar]
  7. J. Hajek and Z. Sidak, Theory of Rank Tests. Academic Press, Inc., New York (1967). [Google Scholar]
  8. A. Janssen, Principal component decomposition of non-parametric tests. Probab. Theory Related Fields 101 (1995) 193–209. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Janssen, Global power functions of goodness of fit tests. Ann. Statist. 28 (2000) 239–253. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Janssen and F. Marohn, On statistical information of extreme order statistics, local extreme value alternatives, and Poisson point processes. J. Multiv. Anal. 48 (1994) 1–30. [CrossRef] [Google Scholar]
  11. C. Jordan, Calculus of Finite Differences, third edition. Chelsea Publishing Co., New York (1965). [Google Scholar]
  12. A.N. Kolmogorov, Confidence limits for an unknown distribution function. Ann. Math. Statist. 12 (1941) 461–463. [Google Scholar]
  13. E.L. Lehmann and J.P. Romano, Testing Statistical Hypotheses, third edition. Springer, New York (2005). [Google Scholar]
  14. H. Milbrodt and H. Strasser, On the asymptotic power of the two-sides Kolmogorov-Smirnov. J. Statist. Plann. Inference 26 (1990) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  15. E.S. Pearson and H.O. Hartley, Biometrika Tables for Statisticians, volume II. Cambridge University Press, New York (1972). [Google Scholar]
  16. D. Quade, On the asymptotic power of the one-sample Kolmogorov-Smirnov Tests. Ann. Math. Statist. 36 (1965) 1000–1018. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Rahnenführer, On preferences of general two-sided tests with applications to Kolmogorov Smirnov-type tests. Statist. Decisions 21 (2003) 149–170. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Shapiro and M. Wilk, An analysis of variance test for normality. Biometrika 52 (1965) 591–611. [CrossRef] [MathSciNet] [Google Scholar]
  19. G.R. Shorak and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986). [Google Scholar]
  20. G.P. Steck, Rectangle probabilities for uniform order statistics. Ann. Math. Statist. 42 (1971) 1–11. [CrossRef] [MathSciNet] [Google Scholar]
  21. M.A. Stephens, The goodness-of-fit statistic VN: Distribution and significance points. Biometrika 52 (1965) 309–321. [MathSciNet] [Google Scholar]
  22. M.A. Stephens, Tests for normality. Technical Report No. 152, November 10, 1969, Department of Statistics, Stanford University (1969). [Google Scholar]
  23. M.A. Stephens, Kolmogorov type tests for exponentiality. Technical Report No. 154, Department of Statistics, Stanford University (1970). [Google Scholar]
  24. H. Strasser, Global extrapolations of local efficiency. Statist. Decisions 8 (1990) 11–26. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.