Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 283 - 300
DOI https://doi.org/10.1051/ps:2008013
Published online 21 July 2009
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Appl. Math. Ser. 55. U.S. Government Printing Office, Washington, D.C. (1964).
  2. J. Andel, Local asymptotic power and efficiency of tests of Kolmogorov-Smirnov type. Ann. Math. Statist. 38 (1967) 1705–1725. [CrossRef] [MathSciNet]
  3. T.W. Anderson and D.A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Statist. 23 (1952) 193–212. [CrossRef]
  4. R. Courant and D. Hilbert, Methods of Mathematical Physics, volume I. Interscience Publishers, Inc., New York (1953).
  5. A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, volume II. Robert E. Krieger Publishing Co., Inc., Melbourne, FL (1981).
  6. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, sixth edition. Academic Press, San Diego (2000).
  7. J. Hajek and Z. Sidak, Theory of Rank Tests. Academic Press, Inc., New York (1967).
  8. A. Janssen, Principal component decomposition of non-parametric tests. Probab. Theory Related Fields 101 (1995) 193–209. [CrossRef] [MathSciNet]
  9. A. Janssen, Global power functions of goodness of fit tests. Ann. Statist. 28 (2000) 239–253. [CrossRef] [MathSciNet]
  10. A. Janssen and F. Marohn, On statistical information of extreme order statistics, local extreme value alternatives, and Poisson point processes. J. Multiv. Anal. 48 (1994) 1–30. [CrossRef]
  11. C. Jordan, Calculus of Finite Differences, third edition. Chelsea Publishing Co., New York (1965).
  12. A.N. Kolmogorov, Confidence limits for an unknown distribution function. Ann. Math. Statist. 12 (1941) 461–463. [CrossRef]
  13. E.L. Lehmann and J.P. Romano, Testing Statistical Hypotheses, third edition. Springer, New York (2005).
  14. H. Milbrodt and H. Strasser, On the asymptotic power of the two-sides Kolmogorov-Smirnov. J. Statist. Plann. Inference 26 (1990) 1–23. [CrossRef] [MathSciNet]
  15. E.S. Pearson and H.O. Hartley, Biometrika Tables for Statisticians, volume II. Cambridge University Press, New York (1972).
  16. D. Quade, On the asymptotic power of the one-sample Kolmogorov-Smirnov Tests. Ann. Math. Statist. 36 (1965) 1000–1018. [CrossRef] [MathSciNet]
  17. J. Rahnenführer, On preferences of general two-sided tests with applications to Kolmogorov Smirnov-type tests. Statist. Decisions 21 (2003) 149–170. [CrossRef] [MathSciNet]
  18. S. Shapiro and M. Wilk, An analysis of variance test for normality. Biometrika 52 (1965) 591–611. [CrossRef] [MathSciNet]
  19. G.R. Shorak and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986).
  20. G.P. Steck, Rectangle probabilities for uniform order statistics. Ann. Math. Statist. 42 (1971) 1–11. [CrossRef] [MathSciNet]
  21. M.A. Stephens, The goodness-of-fit statistic VN: Distribution and significance points. Biometrika 52 (1965) 309–321. [MathSciNet]
  22. M.A. Stephens, Tests for normality. Technical Report No. 152, November 10, 1969, Department of Statistics, Stanford University (1969).
  23. M.A. Stephens, Kolmogorov type tests for exponentiality. Technical Report No. 154, Department of Statistics, Stanford University (1970).
  24. H. Strasser, Global extrapolations of local efficiency. Statist. Decisions 8 (1990) 11–26. [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.