Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 327 - 343
Published online 17 August 2007
  1. S. Artstein, V. Milman and S.J. Szarek, Duality of metric entropy. Ann. Math. (2) 159 (2004) 1213–1328. [Google Scholar]
  2. F. Aurzada., Metric entropy and the small deviation problem for stable processes. To appear in Prob. Math. Stat. (2006). [Google Scholar]
  3. P. Berthet and Z. Shi, Small ball estimates for Brownian motion under a weighted sup-norm. Studia Sci. Math. Hungar. 36 (2000) 275–289. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bertoin, On the first exit time of a completely asymmetric stable process from a finite interval. Bull. London Math. Soc. 28 (1996) 514–520. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Cheridito, H. Kawaguchi and M. Maejima, Fractional Ornstein-Uhlenbeck Processes. Elec. J. Probab. 8 (2003) 1–14. [Google Scholar]
  6. D.E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators. Cambridge University Press (1996). [Google Scholar]
  7. G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals I. Math. Z. 27 (1927) 565–606. [CrossRef] [Google Scholar]
  8. D. Heath, R.A. Jarrow and A. Morton, Bond pricing and the term structure of interest rate: A new methodology for contingent claim valuation. Econometrica 60 (1992) 77–105. [CrossRef] [Google Scholar]
  9. J. Kuelbs and W.V. Li, Metric Entropy and the Small Ball Problem for Gaussian Measures. J. Func. Anal. 116 (1993) 113–157. [Google Scholar]
  10. S. Kwapień, M.B. Marcus and J. Rosiński, Two results on continuity and boundedness of stochastic convolutions. Ann. Inst. Henri Poincaré, Probab. et Stat. 42 (2006) 553–566. [Google Scholar]
  11. W.V. Li, A Gaussian correlation inequality and its application to small ball probabilities. Elec. Comm. Probab. 4 (1999) 111–118. [Google Scholar]
  12. W.V. Li, Small ball probabilities for Gaussian Markov processes under the Lp-norm. Stochastic Processes Appl. 92 (2001) 87–102. [CrossRef] [Google Scholar]
  13. W.V. Li and W. Linde, Existence of small ball constants for fractional Brownian motions. C. R. Acad. Sci. Paris 326 (1998) 1329–1334. [Google Scholar]
  14. W.V. Li and W. Linde, Approximation, metric entropy and the small ball problem for Gaussian measures. Ann. Probab. 27 (1999) 1556–1578. [CrossRef] [MathSciNet] [Google Scholar]
  15. W.V. Li and W. Linde, Small Deviations of Stable Processes via Metric Entropy. J. Theoret. Probab. 17 (2004) 261–284. [CrossRef] [MathSciNet] [Google Scholar]
  16. M.A. Lifshits and T. Simon, Small deviations for fractional stable processes. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 725–752. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Maejima and K. Yamamoto, Long-Memory Stable Ornstein-Uhlenbeck Processes. Elec. J. Probab. 8 (2003) 1–18. [Google Scholar]
  18. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach (1993). [Google Scholar]
  19. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman & Hall (1994). [Google Scholar]
  20. K. Takashima, Sample path properties of ergodic self-similar processes. Osaka J. Math. 26 (1989) 159–189. [MathSciNet] [Google Scholar]
  21. M.S. Taqqu and R.L. Wolpert, Fractional Ornstein-Uhlenbeck Lévy Processes and the Telecom Process: Upstairs and Downstairs. Signal Processing 85 (2005) 1523–1545. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.