Free Access
Issue
ESAIM: PS
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 344 - 364
DOI https://doi.org/10.1051/ps:2007023
Published online 17 August 2007
  1. A. Antoniadis, G. Gregoire and P. Vial, Random design wavelet curve smoothing. Statist. Probab. Lett. 35 (1997) 225–232. [CrossRef] [MathSciNet] [Google Scholar]
  2. Y. Baraud, Model selection for regression on a random design. ESAIM Probab. Statist. 6 (2002) 127–146 (electronic). [Google Scholar]
  3. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, Cambridge University Press (1989). [Google Scholar]
  4. L. Brown and T. Cai, Wavelet shrinkage for nonequispaced samples. Ann. Statist. 26 (1998) 1783–1799. [CrossRef] [MathSciNet] [Google Scholar]
  5. L.D. Brown and M.G. Low, A constrained risk inequality with applications to nonparametric functional estimations. Ann. Statist. 24 (1996) 2524–2535. [CrossRef] [MathSciNet] [Google Scholar]
  6. T.T. Cai, M. Low and L.H. Zhao, Tradeoffs between global and local risks in nonparametric function estimation. Tech. rep., Wharton, University of Pennsylvania, http://stat.wharton.upenn.edu/~tcai/paper/html/Tradeoff.html (2004). [Google Scholar]
  7. V. Delouille, J. Simoens and R. Von Sachs, Smooth design-adapted wavelets for nonparametric stochastic regression. J. Amer. Statist. Soc. 99 (2004) 643–658. [Google Scholar]
  8. J. Fan and I. Gijbels, Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaptation. J. Roy. Statist. Soc. Ser. B. Methodological 57 (1995) 371–394. [Google Scholar]
  9. J. Fan and I. Gijbels, Local polynomial modelling and its applications. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1996). [Google Scholar]
  10. S. Gaïffas, Convergence rates for pointwise curve estimation with a degenerate design. Mathematical Methods of Statistics 1 (2005) 1–27. Available at http://hal.ccsd.cnrs.fr/ccsd-00003086/en/ [Google Scholar]
  11. A. Goldenshluger and A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 (1997) 135–170. [Google Scholar]
  12. G. Kerkyacharian and D. Picard, Regression in random design and warped wavelets. Bernoulli, 10 (2004) 1053–1105. [Google Scholar]
  13. O.V. Lepski, Asymptotically minimax adaptive estimation i: Upper bounds, optimally adaptive estimates. Theory Probab. Applic. 36 (1988) 682–697. [Google Scholar]
  14. O.V. Lepski, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl., 35 (1990) 454–466. [Google Scholar]
  15. O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929–947. [Google Scholar]
  16. O.V. Lepski and V.G. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 (1997) 2512–2546. [Google Scholar]
  17. V. Maxim, Restauration de signaux bruités sur des plans d'experience aléatoires. Ph.D. thesis, Université Joseph Fourier, Grenoble 1 (2003). [Google Scholar]
  18. V.G. Spokoiny, Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Ann. Statist. 26 (1998) 1356–1378. [CrossRef] [MathSciNet] [Google Scholar]
  19. C.J. Stone, Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 (1980) 1348–1360. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Tsybakov, Introduction à l'estimation non-paramétrique. Springer (2003). [Google Scholar]
  21. M.-Y. Wong and Z. Zheng, Wavelet threshold estimation of a regression function with random design. J. Multivariate Anal. 80 (2002) 256–284. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.