Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 344 - 364
Published online 17 August 2007
  1. A. Antoniadis, G. Gregoire and P. Vial, Random design wavelet curve smoothing. Statist. Probab. Lett. 35 (1997) 225–232. [CrossRef] [MathSciNet]
  2. Y. Baraud, Model selection for regression on a random design. ESAIM Probab. Statist. 6 (2002) 127–146 (electronic). [CrossRef] [EDP Sciences] [MathSciNet]
  3. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, Cambridge University Press (1989).
  4. L. Brown and T. Cai, Wavelet shrinkage for nonequispaced samples. Ann. Statist. 26 (1998) 1783–1799. [CrossRef] [MathSciNet]
  5. L.D. Brown and M.G. Low, A constrained risk inequality with applications to nonparametric functional estimations. Ann. Statist. 24 (1996) 2524–2535. [CrossRef] [MathSciNet]
  6. T.T. Cai, M. Low and L.H. Zhao, Tradeoffs between global and local risks in nonparametric function estimation. Tech. rep., Wharton, University of Pennsylvania, (2004).
  7. V. Delouille, J. Simoens and R. Von Sachs, Smooth design-adapted wavelets for nonparametric stochastic regression. J. Amer. Statist. Soc. 99 (2004) 643–658.
  8. J. Fan and I. Gijbels, Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaptation. J. Roy. Statist. Soc. Ser. B. Methodological 57 (1995) 371–394.
  9. J. Fan and I. Gijbels, Local polynomial modelling and its applications. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1996).
  10. S. Gaïffas, Convergence rates for pointwise curve estimation with a degenerate design. Mathematical Methods of Statistics 1 (2005) 1–27. Available at
  11. A. Goldenshluger and A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 (1997) 135–170. [MathSciNet]
  12. G. Kerkyacharian and D. Picard, Regression in random design and warped wavelets. Bernoulli, 10 (2004) 1053–1105.
  13. O.V. Lepski, Asymptotically minimax adaptive estimation i: Upper bounds, optimally adaptive estimates. Theory Probab. Applic. 36 (1988) 682–697. [CrossRef]
  14. O.V. Lepski, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl., 35 (1990) 454–466.
  15. O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929–947. [CrossRef] [MathSciNet]
  16. O.V. Lepski and V.G. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 (1997) 2512–2546. [CrossRef] [MathSciNet]
  17. V. Maxim, Restauration de signaux bruités sur des plans d'experience aléatoires. Ph.D. thesis, Université Joseph Fourier, Grenoble 1 (2003).
  18. V.G. Spokoiny, Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Ann. Statist. 26 (1998) 1356–1378. [CrossRef] [MathSciNet]
  19. C.J. Stone, Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 (1980) 1348–1360. [CrossRef] [MathSciNet]
  20. A. Tsybakov, Introduction à l'estimation non-paramétrique. Springer (2003).
  21. M.-Y. Wong and Z. Zheng, Wavelet threshold estimation of a regression function with random design. J. Multivariate Anal. 80 (2002) 256–284. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.