Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 115 - 146
Published online 31 March 2007
  1. J. Audounet, G. Montseny and B. Mbodje, A simple viscoelastic damper model — application to a vibrating string. Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992), Lect. Notes Control Inform. Sci. 185, Springer, Berlin (1993) 436–446. [Google Scholar]
  2. A. Ayache, S. Léger and M. Pontier, Les ondelettes à la conquête du drap brownien fractionnaire. CRAS série I 335 (2002) 1063–1068. [Google Scholar]
  3. A. Ayache and M. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl. 9 (2003) 451–471. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M. Taqqu, Generators of long-range dependent processes: a survey, in Long-Range dependence, Theory and Applications. Birkhauser (2003) 579–623. [Google Scholar]
  5. O.E. Barndorff-Nielsen and N. Shephard, Non Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J.R. Statistical Society B 63 (2001) 167–241. [Google Scholar]
  6. S. Bernam, Gaussian processes with stationary increments local times and sample function properties. Ann. Math. Statist. 41 (1970) 1260–1272. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Carmona, L. Coutin and G. Montseny, Approximation of some Gaussian processes. Stat. Inference of Stoch. Processes 3 (2000) 161–171. [CrossRef] [Google Scholar]
  8. S. Cohen, Champs localement auto-similaires, dans Lois d'échelle, fractales et ondelettes 1, P. Abry, P. Goncalvès, J. Lévy Véhel, Eds. (2001). [Google Scholar]
  9. X.M. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d'été de probabilités de saint-Flour L. N. in Math 480 (1974) 1–96. [Google Scholar]
  10. E. Igloi and G. Terdik, Long-range dependence through gamma-mixed Ornstein-Uhlenbeck process. E.J.P. 4 (1999) 1–33. [Google Scholar]
  11. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981). [Google Scholar]
  12. I. Karatzas and S.E. Schreve, Brownian Motion and Stochastic Calculus. Springer, 2d edition (1999). [Google Scholar]
  13. S. Léger, Drap brownien fractionnaire, thèse à l'Université d'Orléans (2000). [Google Scholar]
  14. S. Léger and M. Pontier, Drap brownien fractionnaire, in C.R.A.S., Paris, série I 329 (1999) 893–898. [Google Scholar]
  15. Y. Meyer, F. Sellan and M. Taqqu, Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. Journal of Fourier Analysis and Applications 5 (1999) 465–494. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin (1990). [Google Scholar]
  17. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian random Processes, Stochastic Modeling. Chapman and Hall, New York (1994). [Google Scholar]
  18. D.W. Stroock, A Concise Introduction to the Theory of Integration Stochastic Integration. Birkhauser, 2d edition (1994). [Google Scholar]
  19. A.T.A. Wood and G. Chan, A Simulation of stationary Gaussian processes in [0,1]d. J. Comput. Graphical Statist. 3–4 (1994) 409–432. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.