Free Access
Issue
ESAIM: PS
Volume 7, March 2003
Page(s) 279 - 312
DOI https://doi.org/10.1051/ps:2003013
Published online 15 May 2003
  1. P.J. Bickel and M. Rosenblatt, On Some Global Measures of Deviation of Density Function Estimates. Ann. Statist. 1 (1973) 1071-1095. [CrossRef] [MathSciNet]
  2. P. Bickel, C. Klaassen, Y. Ritov and J. Wellner, Efficient and Adaptive Estimation for the Semiparametric Models. John Hopkins University Press, Baltimore (1993).
  3. B.M. Brown, Martingale Central Limit Theorems. Ann. Math. Statist. 42 (1971) 59-66. [CrossRef] [MathSciNet]
  4. L.D. Brown and M. Low, Asymptotic Equivalence of Nonparametric Regression and White Noise. Ann. Statist. 24 (1996) 2384-2398. [CrossRef] [MathSciNet]
  5. M.V. Burnashev, On the Minimax Detection of an Inaccurately Known Signal in a White Gaussian Noise. Theory Probab. Appl. 24 (1979) 107-119. [CrossRef]
  6. N.N. Chentsov, Statistical Decision Rules and Optimal Inference. Moskow, Nauka (1972).
  7. M.S. Ermakov, Minimax Detection of a Signal in Gaussian White Noise. Theory Probab. Appl. 35 (1990) 667-679. [CrossRef] [MathSciNet]
  8. M.S. Ermakov, On Asymptotic Minimaxity of Rank Tests. Statist. Probab. Lett. 15 (1992) 191-196. [CrossRef] [MathSciNet]
  9. M.S. Ermakov, Minimax Nonparametric Testing Hypotheses on a Density Function. Theory Probab. Appl. 39 (1994) 396-416. [CrossRef] [MathSciNet]
  10. M.S. Ermakov, Asymptotic Minimaxity of Tests of Kolmogorov and Omega-squared Types. Theory Probab. Appl. 40 (1995) 54-67. [MathSciNet]
  11. M.S. Ermakov, Asymptotic Minimaxity of Chi-squared Tests. Theory Probab. Appl. 42 (1997) 668-695. [MathSciNet]
  12. M.S. Ermakov, On Distinquishability of Two Nonparametric Sets of Hypotheses. Statist. Probab. Lett. 48 (2000) 275-282. [CrossRef] [MathSciNet]
  13. Y. Fan, Testing Goodness of Fit of a Parametric Density Function by Kernel Method. Econometric Theory 10 (1994) 316-356. [CrossRef] [MathSciNet]
  14. E. Guerre and P. Lavergne, Minimax Rates for Nonparametric Specification Testing in Regression Models, Working Paper. Toulouse University of Social Sciences, Toulouse, France (1999).
  15. B.K. Ghosh and Wei-Mion Huang, The Power and Optimal Kernel of the Bickel-Rosenblatt Test for Goodness of Fit. Ann. Statist. 19 (1991) 999-1009. [CrossRef] [MathSciNet]
  16. P. Hall, Integrated Square Error Properties of Kernel Estimators of Regression Function. Ann. Statist. 12 (1984) 241-260. [CrossRef] [MathSciNet]
  17. P. Hall, Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric Density Estimators. J. Multivar. Anal. 14 (1984) 1-16. [CrossRef]
  18. W. Hardle, Applied Nonparametric Regression. Cambridge University Press, Cambridge (1989).
  19. J.D. Hart, Nonparametric Smoothing and Lack-of-fit Tests. Springer-Verlag, New York (1997).
  20. J.L. Horowitz and V.G. Spokoiny, Adaptive, Rate-optimal Test of Parametric Model against a Nonparametric Alternative, Vol. 542, Preprint. Weierstrass-Institute of Applied Analysis and Stochastic, Berlin (1999).
  21. Yu.I. Ingster, Minimax Detection of Signal in lp-metrics. Z. Nauchn. Sem. (POMI) 184 (1990) 152-168.
  22. Yu.I. Ingster and I.A. Suslina, Minimax Detection of Signals for Besov Balls and Bodies. Probl. Inform. Transm. 34 (1998) 56-68.
  23. Yu.I. Ingster and I.A. Suslina, Nonparametric Goodness-of-Fit Testing under Gaussian Model. Springer-Verlag, New York, Lecture Notes in Statist. 169.
  24. V.D. Konakov, On a Global Measure of Deviation for an Estimate of the Regression Line. Theor. Probab. Appl. 22 (1977) 858-868. [CrossRef]
  25. O.V. Lepski and V.G. Spokoiny, Minimax Nonparametric Hypothesis Testing: The Case of an Inhomogeneous Alternative. Bernoulli 5 (1999) 333-358. [CrossRef] [MathSciNet]
  26. M.A. Lifshits, Gaussian Random Functions. TViMS Kiev (1995).
  27. M. Nussbaum, Asymptotic Equivalence of Density Estimation and Gaussian White Noise. Ann. Statist. 24 (1996) 2399-2430. [CrossRef] [MathSciNet]
  28. V.I. Piterbarg, Asymptotic Methods in Theory of Gaussian Proceses and Fields. Moskow University, Moskow (1988).
  29. J.C.W. Rayner and D.J. Best, Smooth Tests of Goodness of Fit. Oxford University Press, New York (1989).
  30. D. Slepian, The One-sided Barrier Problem for Gaussian Noise. Bell System Tech. J. 41 (1962) 463-501. [CrossRef] [MathSciNet]
  31. V.G. Spokoiny, Adaptive Hypothesis Testing using Wavelets. Ann. Statist. 24 (1996) 2477-2498. [CrossRef] [MathSciNet]
  32. Ch. Stein, Efficient Nonparametric Testing and Estimation, in Third Berkeley Symp. Math. Statist. and Probab, Vol. 1. Univ. California Press, Berkeley (1956) 187-195.
  33. W. Stute, Nonparametric Model Checks for Regression. Ann. Statist. 25 (1997) 613-641. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.