Free Access
Volume 7, March 2003
Page(s) 115 - 146
Published online 15 May 2003
  1. V. Baladi, Positive Transfer Operators and Decay of Correlations. World Scientific, Adv. Ser. Nonlinear Dynam. 16 (2000).
  2. R. Bowen, Equilibrium states and the ergodic theory of Anosov Diffeomorphisms. Springer-Verlag, Lectures Notes 470 (1975).
  3. B.M. Brown, Martingale central limit theorem. Ann. Math. Statist. 42 (1971) 59-66. [CrossRef] [MathSciNet]
  4. N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures. Isreal J. Math. 122 (2001) 1-27. [CrossRef]
  5. J.-P. Conze and A. Raugi, Fonctions harmoniques pour un opérateur de transition et applications. Bull. Soc. Math. France 118 (1990) 273-310. [MathSciNet]
  6. J.-P. Conze and A. Raugi, Convergence des potentiels pour un opérateur de transfert, applications aux systèmes dynamiques et aux chaînes de Markov. Séminaires de Rennes (1998) 52.
  7. M.I. Gordin, On the central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR, Soviet Math. Dokl. 10 (1969) 1174-1176.
  8. M.I. Gordin and B.A. Lifvsic, Central limit theorem for stationary Markov processes. Dokl. Akad. Nauk SSSR 239 (1978) 766-767. [MathSciNet]
  9. S. Gouëzel, Sharp polynomial estimates for the decay of correlations. Preprint (2002).
  10. P. Hall and C.C. Heyde, Martingale limit theory and its applications. Academic Press, New York (1980).
  11. H. Hennion and L. Hervé, Limit theorem for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness. Springer-Verlag, Lectures Notes 1766 (2001).
  12. H. Hu, Decay of correlations for piecwise smooth maps with indifferent fixed points. Preprint.
  13. C. Jan, Vitesse de convergence dans le TCL pour certaines chaînes de Markov et certains systèmes dynamiques, Preprint. Université de Rennes 1 (2000).
  14. D.Y. Kleinbock and G.A. Margulis, Logarithm laws for flows on homogeneous spaces. Invent. Math. 138 (1999) 451-494. [CrossRef] [MathSciNet]
  15. A. Kondah, V. Maume and B. Schmitt, Vitesse de convergence vers l'état d'équilibre pour des dynamiques markoviennes non höldériennes. Ann. Inst. H. Poincaré 33 (1997) 675-695. [CrossRef] [MathSciNet]
  16. C. Liverani, Decay of correlations. Ann. Math. 142 (1995) 239-301. [CrossRef]
  17. C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 (1999) 671-685. [CrossRef] [MathSciNet]
  18. W. Philipp, Some metrical theorems in number theory. Pacific J. Math. 20 (1967) 109-127. [MathSciNet]
  19. M. Pollicott, Rates of mixing for potentials of summable variation. Trans. Amer. Math. Soc. 352 (2000) 843-853. [CrossRef] [MathSciNet]
  20. M. Pollicott and M. Yuri, Statistical properties of maps with indifferent periodic points. Comm. Math. Phys. 217 (2001) 503-520. [CrossRef] [MathSciNet]
  21. A. Raugi, Théorie spectrale d'un opérateur de transition sur un espace métrique compact. Ann. Inst. H. Poincaré 28 (1992) 281-309.
  22. E. Rio, Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. J. Probab. Theory Related Fields 104 (1996) 255-282. [CrossRef] [MathSciNet]
  23. O. Sarig, Subexponential decay of decorrelation. Preprint (2001).
  24. Ya.G. Sinai, Gibbs measures in ergodic theory. Russian Math. Surveys 166 (1972) 21-64.
  25. P. Walters, Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978) 121-153. [CrossRef] [MathSciNet]
  26. L.-S. Young, Recurrence times and rates of mixing. Israel J. Math. 110 (1999) 153-188. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.