Free Access
Issue
ESAIM: PS
Volume 6, 2002
Page(s) 157 - 175
DOI https://doi.org/10.1051/ps:2002009
Published online 15 November 2002
  1. D.J. Aldous, Exchangeability and related topics, edited by P.L. Hennequin, Lectures on probability theory and statistics, École d'été de Probabilité de Saint-Flour XIII. Springer, Berlin, Lectures Notes in Math. 1117 (1985). [Google Scholar]
  2. D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3-48. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.J. Aldous and J. Pitman, The standard additive coalescent. Ann. Probab. 26 (1998) 1703-1726. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bertoin, Lévy processes. Cambridge University Press, Cambridge (1996). [Google Scholar]
  5. J. Bertoin, Homogeneous fragmentation processes. Probab. Theory Related Fields 121 (2001) 301-318. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Bertoin, Self-similar fragmentations. Ann. Inst. H. Poincaré (to appear). [Google Scholar]
  7. J. Bertoin, The asymptotic behaviour of fragmentation processes, Prépublication du Laboratoire de Probabilités et Modèles Aléatoires, Paris 6 et 7. PMA-651 (2001). [Google Scholar]
  8. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Cambridge University Press, Encyclopedia Math. Appl. 27 (1987). [Google Scholar]
  9. E. Bolthausen and A.S. Sznitman, On Ruelle's probability cascades and an abstract cavity method. Commun. Math. Phys. 197 (1998) 247-276. [CrossRef] [Google Scholar]
  10. M.D. Brennan and R. Durrett, Splitting intervals. Ann. Probab. 14 (1986) 1024-1036. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.D. Brennan and R. Durrett, Splitting intervals II. Limit laws for lengths. Probab. Theory Related Fields 75 (1987) 109-127. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Dellacherie and P. Meyer, Probabilités et potentiel, Chapitres V à VIII. Hermann, Paris (1980). [Google Scholar]
  13. S.N. Evans and J. Pitman, Construction of Markovian coalescents. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 339-383. [CrossRef] [MathSciNet] [Google Scholar]
  14. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library (1981). [Google Scholar]
  15. J.F.C. Kingman, The coalescent. Stochastic Process. Appl. 13 (1960) 235-248. [Google Scholar]
  16. M. Perman, Order statistics for jumps of normalised subordinators. Stochastic Process. Appl. 46 (1993) 267-281. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Pitman, Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Sato, Lévy Processes and Infinitly Divisible Distributions. Cambridge University Press, Cambridge, Cambridge Stud. Adv. Math. 68 (1999). [Google Scholar]
  19. J. Schweinsberg, Coalescents with simultaneous multiple collisions. Electr. J. Probab. 5-12 (2000) 1-50.http://www.math.washington.edu/ejpecp.ejp5contents.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.