Free Access
Volume 5, 2001
Page(s) 183 - 201
Published online 15 August 2002
  1. D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs. Monograph in preparation. Available from the Aldous's home page at [Google Scholar]
  2. B. Bercu and A. Rouault, Sharp large deviations for the Ornstein-Uhlenbeck process (to appear). [Google Scholar]
  3. E. Bolthausen, The Berry-Esseen Theorem for Functionals of Discrete Markov Chains. Z. Wahrscheinlichkeitstheorie Verw. 54 (1980) 59-73. [CrossRef] [Google Scholar]
  4. W. Bryc and A. Dembo, Large deviations for quadratic functionals of gaussian processes. J. Theoret. Probab. 10 (1997) 307-332. [CrossRef] [MathSciNet] [Google Scholar]
  5. M.F. Cheng and F.Y. Wang, Estimation of spectral gap for elliptic operators. Trans. AMS 349 (1997) 1239-1267. [Google Scholar]
  6. K.L. Chung. Markov chains with stationnary transition probabilities. Springer-Verlag (1960). [Google Scholar]
  7. J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, Boston (1989). [Google Scholar]
  8. P. Diaconis, S. Holmes and R.M. Neal, Analysis of a non-reversible markov chain sampler, Technical Report. Cornell University, BU-1385-M, Biometrics Unit (1997). [Google Scholar]
  9. I.H. Dinwoodie, A probability inequality for the occupation measure of a reversible Markov chain. Ann. Appl. Probab 5 (1995) 37-43. [CrossRef] [MathSciNet] [Google Scholar]
  10. I.H. Dinwoodie, Expectations for nonreversible Markov chains. J. Math. Ann. App. 220 (1998) 585-596. [CrossRef] [Google Scholar]
  11. I.H. Dinwoodie and P Ney, Occupation measures for Markov chains. J. Theoret. Probab. 8 (1995) 679-691. [CrossRef] [MathSciNet] [Google Scholar]
  12. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley & Sons, 2nd Edition (1971). [Google Scholar]
  13. S. Gallot and D. Hulin and J. Lafontaine, Riemannian Geometry. Springer-Verlag (1990). [Google Scholar]
  14. D. Gillman, Hidden Markov Chains: Rates of Convergence and the Complexity of Inference, Ph.D. Thesis. Massachusetts Institute of Technology (1993). [Google Scholar]
  15. L. Gross, Logarithmic Sobolev Inequalities and Contractivity Properties of Semigroups, in Dirichlet forms, Varenna (Italy). Springer-Verlag, Lecture Notes in Math. 1563 (1992) 54-88. [Google Scholar]
  16. J.L. Jensen, Saddlepoint Approximations. Oxford Statist. Sci. Ser. 16. [Google Scholar]
  17. T. Kato, Perturbation theory for linear operators. Springer (1966). [Google Scholar]
  18. D. Landers and L. Rogge, On the rate of convergence in the central limit theorem for Markov chains. Z. Wahrscheinlichkeitstheorie Verw. 35 (1976) 169-183. [Google Scholar]
  19. G.F. Lawler and A.D. Sokal, Bounds on the L2 spectrum for Markov chains and Markov processes: A generalization of Cheeger's inequality. Trans. Amer. Math. Soc. 309 (1988) 557-580. [MathSciNet] [Google Scholar]
  20. P. Lezaud, Chernoff-type Bound for Finite Markov Chains. Ann. Appl. Probab 8 (1998) 849-867. [Google Scholar]
  21. B. Mann, Berry-Esseen Central Limit Theorem for Markov chains, Ph.D. Thesis. Harvard University (1996). [Google Scholar]
  22. K. Marton, A measure concentration inequality for contracting Markov chains. Geom. Funct. Anal. 6 (1996) 556-571. [CrossRef] [MathSciNet] [Google Scholar]
  23. S.V. Nagaev, Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2 (1957) 378-406. [CrossRef] [Google Scholar]
  24. P.M. Samson, Concentration of measure inequalities for Markov chains and Φ-mixing processes, Ann. Probab. 28 (2000) 416-461. [Google Scholar]
  25. H.F. Trotter, On the product of semi-groups of operators. Proc. Amer. Math. Soc. 10 (1959) 545-551. [Google Scholar]
  26. F.Y. Wang, Existence of spectral gap for elliptic operators. Math. Sci. Res. Inst. (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.