Free Access
Volume 5, 2001
Page(s) 203 - 224
Published online 15 August 2002
  1. A. Bonami, F. Bouchut, E. Cépa and D. Lépingle, A nonlinear SDE involving Hilbert transform. J. Funct. Anal. 165 (1999) 390-406. [CrossRef] [MathSciNet]
  2. E. Cépa, Équations différentielles stochastiques multivoques. Sémin. Probab. XXIX (1995) 86-107.
  3. E. Cépa, Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500-532. [CrossRef] [MathSciNet]
  4. E. Cépa and D. Lépingle, Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 (1997) 429-449. [CrossRef] [MathSciNet]
  5. T. Chan, The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Related Fields 93 (1992) 249-272. [CrossRef] [MathSciNet]
  6. B. Duplantier, G.F. Lawler, J.F. Le Gall and T.J. Lyons, The geometry of Brownian curve. Bull. Sci. Math. 2 (1993) 91-106.
  7. F.J. Dyson, A Brownian motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198.
  8. W. Feller, Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. [MathSciNet]
  9. D.J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré 35 (1999) 177-204. [CrossRef] [MathSciNet]
  10. D. Hobson and W. Werner, Non-colliding Brownian motion on the circle. Bull. London Math. Soc. 28 (1996) 643-650. [CrossRef] [MathSciNet]
  11. I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus. Springer, Berlin Heidelberg New York (1988).
  12. P.L. Lions and A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  13. H.P. McKean, Stochastic integrals. Academic Press, New York (1969).
  14. M.L. Mehta, Random matrices. Academic Press, New York (1991).
  15. M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites. Sémin. Probab. XX (1986) 426-446.
  16. M. Nagasawa and H. Tanaka, A diffusion process in a singular mean-drift field. Z. Wahrsch. Verw. Gebiete 68 (1985) 247-269. [CrossRef] [MathSciNet]
  17. R.G. Pinsky, On the convergence of diffusion processes conditioned to remain in a bounded region for large times to limiting positive recurrent diffusion processes. Ann. Probab. 13 (1985) 363-378. [CrossRef] [MathSciNet]
  18. D. Revuz and M. Yor, Continuous martingales and Brownian motion. Springer Verlag, Berlin Heidelberg (1991).
  19. L.C.G. Rogers and Z. Shi, Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 (1993) 555-570. [CrossRef] [MathSciNet]
  20. L.C.G. Rogers and D. Williams, Diffusions, Markov processes and Martingales. Wiley and Sons, New York (1987).
  21. Y. Saisho, Stochastic differential equations for multidimensional domains with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. [CrossRef] [MathSciNet]
  22. H.Spohn, Dyson's model of interacting Brownian motions at arbitrary coupling strength. Markov Process. Related Fields 4 (1998) 649-661. [MathSciNet]
  23. A.S. Sznitman, Topics in propagation of chaos. École d'été Probab. Saint-Flour XIX (1991) 167-251.
  24. H. Tanaka, Stochastic differential equations with reflecting boundary conditions in convex regions. Hiroshima Math. J. 9 (1979) 163-177. [MathSciNet]
  25. D. Voiculescu, Lectures on free probability theory. École d'été Probab. Saint-Flour (1998).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.