Free Access
Volume 5, 2001
Page(s) 119 - 140
Published online 15 August 2002
  1. R.E. Barlow, D.J. Bartholomew, J.M. Bremmer and H.D. Brunk, Statistical Inference under Order Restrictions. Wiley (1972).
  2. D. Barry and J.A. Hartigan, An omnibus test for departures from constant mean. Ann. Statist. 18 (1990) 1340-1357. [CrossRef] [MathSciNet]
  3. H.D. Brunk, On the estimation of parameters restricted by inequalities. Ann. Math. Statist. (1958) 437-454.
  4. C. Durot, Sharp asymptotics for isotonic regression. Probab. Theory Relat. Fields (to appear).
  5. R.L. Eubank and J.D. Hart, Testing goodness of fit in regression via order selection criteria. Ann. Statist. 20 (1992) 1412-1425. [CrossRef] [MathSciNet]
  6. R.L. Eubank and C.H. Spiegelman, Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 (1990) 387-392. [CrossRef] [MathSciNet]
  7. P. Groeneboom, Estimating a monotone density, edited by R.A. Olsen and L. Le Cam, in Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. 2. Wadsworth (1985) 539-554.
  8. P. Groeneboom, Brownian motion with parabolic drift and airy functions. Probab. Theory Relat. Fields (1989) 79-109.
  9. P. Hall, J.W. Kay and D.M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 (1990) 521-528. [CrossRef] [MathSciNet]
  10. W. Härdle and E. Mammen, Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 (1993) 1926-1947. [CrossRef] [MathSciNet]
  11. J.D. Hart and T.E. Wehrly, Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models. J. Amer. Statist. Assoc. 87 (1992) 1018-1024. [CrossRef] [MathSciNet]
  12. L. Reboul, Estimation of a function under shape restrictions. Applications to reliability, Preprint. Université Paris XI, Orsay (1997).
  13. D. Revuz and M. Yor, Continuous martingales and Brownian Motion. Springer-Verlag (1991).
  14. J. Rice, Bandwidth choice for nonparametric regression. Ann. Statist. 4 (1984) 1215-1230. [CrossRef]
  15. H.P. Rosenthal, On the subspace of lp, p>2, spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273-303. [CrossRef] [MathSciNet]
  16. A.I. Sakhanenko, Estimates in the variance principle. Trudy. Inst. Mat. Sibirsk. Otdel (1972) 27-44.
  17. J.G. Staniswalis and T.A. Severini, Diagnostics for assessing regression models. J. Amer. Statist. Assoc. 86 (1991) 684-692. [CrossRef] [MathSciNet]
  18. W. Stute, Nonparametric model checks for regression. Ann. Statist. 15 (1997) 613-641.
  19. A.S. Tocquet, Construction et étude de tests en régression. 1. Correction du rapport de vraisemblance par approximation de Laplace en régression non-linéaire. 2. Test d'adéquation en régression isotonique à partir d'une asymptotique des fluctuations de la distance l1, Ph.D. Thesis. Université Paris Sud, Orsay (1998).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.