Free Access
Volume 5, 2001
Page(s) 119 - 140
Published online 15 August 2002
  1. R.E. Barlow, D.J. Bartholomew, J.M. Bremmer and H.D. Brunk, Statistical Inference under Order Restrictions. Wiley (1972). [Google Scholar]
  2. D. Barry and J.A. Hartigan, An omnibus test for departures from constant mean. Ann. Statist. 18 (1990) 1340-1357. [CrossRef] [MathSciNet] [Google Scholar]
  3. H.D. Brunk, On the estimation of parameters restricted by inequalities. Ann. Math. Statist. (1958) 437-454. [Google Scholar]
  4. C. Durot, Sharp asymptotics for isotonic regression. Probab. Theory Relat. Fields (to appear). [Google Scholar]
  5. R.L. Eubank and J.D. Hart, Testing goodness of fit in regression via order selection criteria. Ann. Statist. 20 (1992) 1412-1425. [Google Scholar]
  6. R.L. Eubank and C.H. Spiegelman, Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 (1990) 387-392. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Groeneboom, Estimating a monotone density, edited by R.A. Olsen and L. Le Cam, in Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. 2. Wadsworth (1985) 539-554. [Google Scholar]
  8. P. Groeneboom, Brownian motion with parabolic drift and airy functions. Probab. Theory Relat. Fields (1989) 79-109. [Google Scholar]
  9. P. Hall, J.W. Kay and D.M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 (1990) 521-528. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. Härdle and E. Mammen, Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 (1993) 1926-1947. [Google Scholar]
  11. J.D. Hart and T.E. Wehrly, Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models. J. Amer. Statist. Assoc. 87 (1992) 1018-1024. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Reboul, Estimation of a function under shape restrictions. Applications to reliability, Preprint. Université Paris XI, Orsay (1997). [Google Scholar]
  13. D. Revuz and M. Yor, Continuous martingales and Brownian Motion. Springer-Verlag (1991). [Google Scholar]
  14. J. Rice, Bandwidth choice for nonparametric regression. Ann. Statist. 4 (1984) 1215-1230. [CrossRef] [Google Scholar]
  15. H.P. Rosenthal, On the subspace of lp, p>2, spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273-303. [CrossRef] [MathSciNet] [Google Scholar]
  16. A.I. Sakhanenko, Estimates in the variance principle. Trudy. Inst. Mat. Sibirsk. Otdel (1972) 27-44. [Google Scholar]
  17. J.G. Staniswalis and T.A. Severini, Diagnostics for assessing regression models. J. Amer. Statist. Assoc. 86 (1991) 684-692. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Stute, Nonparametric model checks for regression. Ann. Statist. 15 (1997) 613-641. [Google Scholar]
  19. A.S. Tocquet, Construction et étude de tests en régression. 1. Correction du rapport de vraisemblance par approximation de Laplace en régression non-linéaire. 2. Test d'adéquation en régression isotonique à partir d'une asymptotique des fluctuations de la distance l1, Ph.D. Thesis. Université Paris Sud, Orsay (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.