Free Access
Issue
ESAIM: PS
Volume 4, 2000
Page(s) 233 - 258
DOI https://doi.org/10.1051/ps:2000107
Published online 15 August 2002
  1. A.R. Bergstrom, Statistical inference in Continuous Time Series, in Statistical inference in Continuous Time Economic Models, Bergstrom, Ed., North Holland, Amsterdam (1976). [Google Scholar]
  2. B.M. Bibby et M. Sorensen, Martingale Estimation Functions for Discretely Observed Diffusion Processes. Bernoulli 1 (1995) 17-39. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Dacunha-Castelle et M. Duflo, Probabilité et Statistiques. Tome 2, 2e Ed. Masson (1993). [Google Scholar]
  4. D. Dacunha-Castelle et D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations. Stochastics 19 (1986) 263-284. [MathSciNet] [Google Scholar]
  5. D. Florens-Zmirou, Approximate discrete schemes for statistics of diffusion processes. Statistics 20 (1989) 547-557. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Gourieroux et A. Monfort, Statistique et Modèles Économétriques. Tome 1. Economica. [Google Scholar]
  7. L. Hansen, Large Sample Properies of Generalized Method of Moments Estimators. Econometrica 50 (1982) 1029-1054. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. L. Hansen et K. Singleton, Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models. Econometrica 50 (1982) 1269-1286. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Karatzas et S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Ed. Springer (1996). [Google Scholar]
  10. M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat. 24 (1997) 211-229. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Kessler, Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process. Research Reports 336, Department of theoretical statistics, University of Aarhus (1995). [Google Scholar]
  12. M. Kessler et M. Sorensen, Estimating Equations Based on Eigenfunctions for a Discretely Observed Diffusion Process. Research Reports 332, Department of theoretical statistics, University of Aarhus (1995). [Google Scholar]
  13. P.E. Kloeden et E. Platen, Numerical Solution of Stochastic Differential Equations. Springer (1995). [Google Scholar]
  14. Yu.A. Kutoyants, Parameter estimation for stochastic processes. Heldermann Verlag, Berlin, Research and Exposition in Math. 6 (1984). [Google Scholar]
  15. R.S. Liptser et A.N. Shiryaev, Statistics of random processes. Tomes 1, 2. Springer-Verlag (1977). [Google Scholar]
  16. W.H. Press, S.A. Teukolskey, W.T. Vetterling et B.P. Flannery, Numerical Recipes in C, 2nd Ed. Cambridge University Press, 132-133. [Google Scholar]
  17. B.L.S. Prakasa-Rao, Asymptotic theory for non linear least squares estimator for diffusion proceses. Math. Operationsforsch. Statist Ser. Berlin 14 (1983) 195-209. [Google Scholar]
  18. A.R. Pedersen, Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1 (1995) 257-279. [MathSciNet] [Google Scholar]
  19. A.R. Pedersen, A new approch to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist. 22 (1995) 55-71. [MathSciNet] [Google Scholar]
  20. J.D. Sargan, Some discrete approximations to continuous times stochastics models, in Statistical inference in Continuous Time Economic Models. Bergstrom, Ed., North Holand, Amsterdam (1976) 27-80. [Google Scholar]
  21. M. Sorensen, Estimating functions for discretely observed diffusions: A review. Research Reports 348, Department of theoretical statistics, University of Aarhus (1996). [Google Scholar]
  22. N. Yoshida, Estimation for diffusion processes from discrete observations. J. Multivariate Anal. 41 (1992) 220-242. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.