Free Access
Issue
ESAIM: PS
Volume 4, 2000
Page(s) 233 - 258
DOI https://doi.org/10.1051/ps:2000107
Published online 15 August 2002
  1. A.R. Bergstrom, Statistical inference in Continuous Time Series, in Statistical inference in Continuous Time Economic Models, Bergstrom, Ed., North Holland, Amsterdam (1976).
  2. B.M. Bibby et M. Sorensen, Martingale Estimation Functions for Discretely Observed Diffusion Processes. Bernoulli 1 (1995) 17-39. [CrossRef] [MathSciNet]
  3. D. Dacunha-Castelle et M. Duflo, Probabilité et Statistiques. Tome 2, 2e Ed. Masson (1993).
  4. D. Dacunha-Castelle et D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations. Stochastics 19 (1986) 263-284. [MathSciNet]
  5. D. Florens-Zmirou, Approximate discrete schemes for statistics of diffusion processes. Statistics 20 (1989) 547-557. [CrossRef] [MathSciNet]
  6. C. Gourieroux et A. Monfort, Statistique et Modèles Économétriques. Tome 1. Economica.
  7. L. Hansen, Large Sample Properies of Generalized Method of Moments Estimators. Econometrica 50 (1982) 1029-1054. [CrossRef] [MathSciNet] [PubMed]
  8. L. Hansen et K. Singleton, Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models. Econometrica 50 (1982) 1269-1286. [CrossRef] [MathSciNet]
  9. I. Karatzas et S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Ed. Springer (1996).
  10. M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat. 24 (1997) 211-229. [CrossRef] [MathSciNet]
  11. M. Kessler, Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process. Research Reports 336, Department of theoretical statistics, University of Aarhus (1995).
  12. M. Kessler et M. Sorensen, Estimating Equations Based on Eigenfunctions for a Discretely Observed Diffusion Process. Research Reports 332, Department of theoretical statistics, University of Aarhus (1995).
  13. P.E. Kloeden et E. Platen, Numerical Solution of Stochastic Differential Equations. Springer (1995).
  14. Yu.A. Kutoyants, Parameter estimation for stochastic processes. Heldermann Verlag, Berlin, Research and Exposition in Math. 6 (1984).
  15. R.S. Liptser et A.N. Shiryaev, Statistics of random processes. Tomes 1, 2. Springer-Verlag (1977).
  16. W.H. Press, S.A. Teukolskey, W.T. Vetterling et B.P. Flannery, Numerical Recipes in C, 2nd Ed. Cambridge University Press, 132-133.
  17. B.L.S. Prakasa-Rao, Asymptotic theory for non linear least squares estimator for diffusion proceses. Math. Operationsforsch. Statist Ser. Berlin 14 (1983) 195-209.
  18. A.R. Pedersen, Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1 (1995) 257-279. [MathSciNet]
  19. A.R. Pedersen, A new approch to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist. 22 (1995) 55-71. [MathSciNet]
  20. J.D. Sargan, Some discrete approximations to continuous times stochastics models, in Statistical inference in Continuous Time Economic Models. Bergstrom, Ed., North Holand, Amsterdam (1976) 27-80.
  21. M. Sorensen, Estimating functions for discretely observed diffusions: A review. Research Reports 348, Department of theoretical statistics, University of Aarhus (1996).
  22. N. Yoshida, Estimation for diffusion processes from discrete observations. J. Multivariate Anal. 41 (1992) 220-242. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.