Free Access
Volume 3, 1999
Page(s) 49 - 65
Published online 15 August 2002
  1. R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing. Holt, Rhineart and Winston, New York (1975). [Google Scholar]
  2. J.-L. Bon, Méthodes Mathématiques de Fiabilité, Éditions Masson, Paris (1995). [Google Scholar]
  3. J.-L. Bon and E. Paltanea, Encadrement de la fiabilité d'un système markovien à partir des caractéristiques de ses composants, Actes des XXIXes Journées de Statistique, ASU (1997). [Google Scholar]
  4. K. Chen and Z. He, Reliability bounds for NBUE and NWUE distributions. Acta Mat. Appli. Sinica 4 (1989). [Google Scholar]
  5. D.R. Cox, Renewal Theory, J. Wiley (1967). [Google Scholar]
  6. I.B. Gertsbakh, Asymptotic methods in reliability theory: A review. Adv. in Appl. Prob. 16 (1984) 147-175. [CrossRef] [Google Scholar]
  7. D.B. Gnedenko and A.D. Solovyev, Estimation de la fiabilité des systèmes réparables complexes. Teknicheskaia Kibernetika 3 (1975) 121-128 (en russe). [Google Scholar]
  8. V.V. Kalashnikov, Geometric sums: Bounds for rare events with applications, Kluwer academic Publishers (1997). [Google Scholar]
  9. G.P. Klimov, Stokastiskie systemi obslujivanie, Nauka (in Russian) (1966). [Google Scholar]
  10. J. Keilson, Stochastic models in reliability theory, in Teoria dell affidabilita, Proc. Int. School Enrico Fermi, North-Holland (1984). [Google Scholar]
  11. I.N. Kovalenko, N.Yu. Kuznetsov and P.A. Pegg, Mathematical Theory of Reliability of Time dependent Systems with Practical Applications, J. Wiley (1997). [Google Scholar]
  12. P. Pamphile, Calcul de fiabilité de grands systèmes hautement fiables. Thèse université Paris-Sud (Orsay), Paris (1994). [Google Scholar]
  13. A.D. Solovyev, Voprosi Matematicheskoi Teorii Nadejnosti, Gnedenko B.V., Ed., Radio i Sviaz, Moscow (1983) (in Russian). [Google Scholar]
  14. A.D. Solovyev and D.G. Konstant, Reliability estimation of a complex renewable system with an unbounded number of repair units. J. Appl. Probab. 28 (1991) 833-842. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.