Issue |
ESAIM: PS
Volume 3, 1999
|
|
---|---|---|
Page(s) | 131 - 150 | |
DOI | https://doi.org/10.1051/ps:1999106 | |
Published online | 15 August 2002 |
Poisson perturbations
1
Abteilung für Angewandte Mathematik, Universität Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland;
adb@amath.unizh.ch.
2
Department of Statistics, School of Mathematics, The University of
New South Wales, Sydney 2052, Australia.
Received:
28
January
1999
Revised:
26
July
1999
Stein's method is used to prove approximations in total variation to the distributions of integer valued random variables by (possibly signed) compound Poisson measures. For sums of independent random variables, the results obtained are very explicit, and improve upon earlier work of Kruopis (1983) and Čekanavičius (1997); coupling methods are used to derive concrete expressions for the error bounds. An example is given to illustrate the potential for application to sums of dependent random variables.
Résumé
On utilise la méthode de Stein pour approximer, par rapport à la variation totale, la distribution d'une variable aléatoire aux valeurs entières par une mesure (éventuellement signée) de Poisson composée. Pour les sommes de variables aléatoires indépendantes, on obtient des résultats très explicites ; les estimations de la précision de l'approximation, construites à l'aide de la méthode de “coupling”, sont plus exactes que celles de Kruopis (1983) et de Čekanivičius (1997). Un exemple sert à illustrer le potentiel de la méthode envers les sommes de variables aléatoires dépendantes.
Mathematics Subject Classification: 62E17 / 60G50 / 60F05
Key words: Stein's method / signed compound Poisson measure / total variation / coupling.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.