The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Hermine Biermé , Frédéric Richard
ESAIM: PS, 12 (2008) 30-50
Published online: 2007-11-13
This article has been cited by the following article(s):
17 articles
Anisotropic Fractional Brownian Field Synthesis via Curvelet Transform
M. V. C. Henriques and F. E. A. Leite Brazilian Journal of Physics 54 (6) (2024) https://doi.org/10.1007/s13538-024-01580-1
Full inference for the anisotropic fractional Brownian field
Paul Escande and Frédéric Richard Theory of Probability and Mathematical Statistics 110 13 (2024) https://doi.org/10.1090/tpms/1204
PyAFBF: a Python library for sampling image textures
from the anisotropic fractional Brownian field.
Frédéric J. P. Richard Journal of Open Source Software 7 (75) 3821 (2022) https://doi.org/10.21105/joss.03821
Surface Regularity via the Estimation of Fractional Brownian Motion Index
Hamed Rabiei, Olivier Coulon, Julien Lefevre and Frederic J. P. Richard IEEE Transactions on Image Processing 30 1453 (2021) https://doi.org/10.1109/TIP.2020.3043892
Statistical tests of heterogeneity for anisotropic multifractional Brownian fields
Huong T.L. Vu and Frédéric J.P. Richard Stochastic Processes and their Applications 130 (8) 4667 (2020) https://doi.org/10.1016/j.spa.2020.01.012
Wavelet-based estimations of fractional Brownian sheet: Least squares versus maximum likelihood
Liang Wu and Yiming Ding Journal of Computational and Applied Mathematics 371 112609 (2020) https://doi.org/10.1016/j.cam.2019.112609
Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures
Frédéric J. P. Richard Statistics and Computing 28 (6) 1155 (2018) https://doi.org/10.1007/s11222-017-9785-z
Texture anisotropy technique in brain degenerative diseases
Luminiţa Moraru, Simona Moldovanu, Lucian Traian Dimitrievici, Amira S. Ashour and Nilanjan Dey Neural Computing and Applications 30 (5) 1667 (2018) https://doi.org/10.1007/s00521-016-2777-7
Parameter estimation of Gaussian stationary processes using the generalized method of moments
Luis A. Barboza and Frederi G. Viens Electronic Journal of Statistics 11 (1) (2017) https://doi.org/10.1214/17-EJS1230
Estimation of self-similar Gaussian fields using wavelet transform
Liang Wu and Yiming Ding International Journal of Wavelets, Multiresolution and Information Processing 13 (06) 1550044 (2015) https://doi.org/10.1142/S0219691315500447
A Turning-Band Method for the Simulation of Anisotropic Fractional Brownian Fields
Hermine Biermé, Lionel Moisan and Frédéric Richard Journal of Computational and Graphical Statistics 24 (3) 885 (2015) https://doi.org/10.1080/10618600.2014.946603
Testing Isotropy in Spatial Econometric Models
Giuseppe Arbia, Marco Bee and Giuseppe Espa Spatial Economic Analysis 8 (3) 228 (2013) https://doi.org/10.1080/17421772.2013.804629
Mathematical Image Processing
Hermine Biermé and Frédéric J. P. Richard Springer Proceedings in Mathematics, Mathematical Image Processing 5 59 (2011) https://doi.org/10.1007/978-3-642-19604-1_3
Central Limit Theorems and Quadratic Variations in Terms of Spectral Density
Hermine Biermé, Aline Bonami and José R. Leon Electronic Journal of Probability 16 (none) (2011) https://doi.org/10.1214/EJP.v16-862
Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise
Sophie Achard and Jean-François Coeurjolly Statistics Surveys 4 (none) (2010) https://doi.org/10.1214/09-SS059
Statistical Tests of Anisotropy for Fractional Brownian Textures. Application to Full-field Digital Mammography
Frédéric Richard and Hermine Bierme Journal of Mathematical Imaging and Vision 36 (3) 227 (2010) https://doi.org/10.1007/s10851-009-0181-y
Estimation of quadratic variation for two-parameter diffusions
Anthony Réveillac Stochastic Processes and their Applications 119 (5) 1652 (2009) https://doi.org/10.1016/j.spa.2008.08.006