The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Frédéric Cérou , Arnaud Guyader
ESAIM: PS, 10 (2006) 340-355
Published online: 2006-09-08
This article has been cited by the following article(s):
73 articles
Review on functional data classification
Shuoyang Wang, Yuan Huang and Guanqun Cao WIREs Computational Statistics 16 (1) (2024) https://doi.org/10.1002/wics.1638
Strong optimality of kernel functional regression in $$L^p$$ norms with partial response variables and applications
Majid Mojirsheibani Statistical Papers (2024) https://doi.org/10.1007/s00362-024-01611-8
Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data*
Mustapha Mohammedi, Salim Bouzebda, Ali Laksaci and Oussama Bouanani Communications in Statistics - Theory and Methods 53 (9) 3143 (2024) https://doi.org/10.1080/03610926.2022.2150823
S. Mohammad E. Hosseini-Nasab and Hassan Sharghi 43 (2024) https://doi.org/10.1007/978-3-031-66501-1_3
Universal consistency of the k-NN rule in metric spaces and Nagata dimension. II
Sushma Kumari and Vladimir G. Pestov ESAIM: Probability and Statistics 28 132 (2024) https://doi.org/10.1051/ps/2024002
Functional Data Analysis: An Introduction and Recent Developments
Jan Gertheiss, David Rügamer, Bernard X. W. Liew and Sonja Greven Biometrical Journal 66 (7) (2024) https://doi.org/10.1002/bimj.202300363
Distance‐weighted discrimination for functional data
Peijun Sang Stat 12 (1) (2023) https://doi.org/10.1002/sta4.598
A Reproducing Kernel Hilbert Space Framework for Functional Classification
Peijun Sang, Adam B. Kashlak and Linglong Kong Journal of Computational and Graphical Statistics 32 (3) 1000 (2023) https://doi.org/10.1080/10618600.2022.2138407
Distributed adaptive nearest neighbor classifier: algorithm and theory
Ruiqi Liu, Ganggang Xu and Zuofeng Shang Statistics and Computing 33 (5) (2023) https://doi.org/10.1007/s11222-023-10267-7
Universal consistency of Wasserstein k-NN classifier: a negative and some positive results
Donlapark Ponnoprat Information and Inference: A Journal of the IMA 12 (3) 1997 (2023) https://doi.org/10.1093/imaiai/iaad027
The k-nearest neighbors method in single index regression model for functional quasi-associated time series data
Salim Bouzebda, Ali Laksaci and Mustapha Mohammedi Revista Matemática Complutense 36 (2) 361 (2023) https://doi.org/10.1007/s13163-022-00436-z
Consistency of the k-nearest neighbors rule for functional data
Ahmad Younso Comptes Rendus. Mathématique 361 (G1) 237 (2023) https://doi.org/10.5802/crmath.402
A centroid classifier for functional/longitudinal data
Nadiyeh Darabi and S. Mohammad E. Hosseini-Nasab Journal of Statistical Computation and Simulation 92 (5) 1034 (2022) https://doi.org/10.1080/00949655.2021.1983573
A deterministic approach for protecting privacy in sensitive personal data
Demetris Avraam, Elinor Jones and Paul Burton BMC Medical Informatics and Decision Making 22 (1) (2022) https://doi.org/10.1186/s12911-022-01754-4
Wavelet analysis of variance box plot
Jeffrey Williams, Raymond R. Hill, Joseph J. Pignatiello Jr. and Eric Chicken Journal of Applied Statistics 49 (14) 3536 (2022) https://doi.org/10.1080/02664763.2021.1951685
On projection methods for functional time series forecasting
Antonio Elías, Raúl Jiménez and Han Lin Shang Journal of Multivariate Analysis 189 104890 (2022) https://doi.org/10.1016/j.jmva.2021.104890
A nearest-neighbor-based ensemble classifier and its large-sample optimality
Majid Mojirsheibani and William Pouliot Journal of Statistical Computation and Simulation 91 (10) 2034 (2021) https://doi.org/10.1080/00949655.2021.1882458
Flexible integrated functional depths
Stanislav Nagy, Sami Helander, Germain Van Bever, Lauri Viitasaari and Pauliina Ilmonen Bernoulli 27 (1) (2021) https://doi.org/10.3150/20-BEJ1254
Universal Bayes consistency in metric spaces
Steve Hanneke, Aryeh Kontorovich, Sivan Sabato and Roi Weiss The Annals of Statistics 49 (4) (2021) https://doi.org/10.1214/20-AOS2029
On statistical classification with incomplete covariates via filtering
Majid Mojirsheibani and My-Nhi Nguyen Journal of Statistical Computation and Simulation 91 (7) 1342 (2021) https://doi.org/10.1080/00949655.2020.1856379
Optimal functional supervised classification with separation condition
Sébastien Gadat, Sébastien Gerchinovitz and Clément Marteau Bernoulli 26 (3) (2020) https://doi.org/10.3150/19-BEJ1170
Prediction in Chaotic Environments Based on Weak Quadratic Classifiers
Alexander Musaev and Ekaterina Borovinskaya Symmetry 12 (10) 1630 (2020) https://doi.org/10.3390/sym12101630
Nonparametric discrimination of areal functional data
Ahmad Younso Brazilian Journal of Probability and Statistics 34 (1) (2020) https://doi.org/10.1214/18-BJPS418
Universal consistency of the k-NN rule in metric spaces and Nagata dimension
Benoît Collins, Sushma Kumari and Vladimir G. Pestov ESAIM: Probability and Statistics 24 914 (2020) https://doi.org/10.1051/ps/2020018
Steve Hanneke, Aryeh Kontorovich, Sivan Sabato and Roi Weiss 1 (2020) https://doi.org/10.1109/ITA50056.2020.9244988
kNN estimation in functional partial linear modeling
Nengxiang Ling, Germán Aneiros and Philippe Vieu Statistical Papers 61 (1) 423 (2020) https://doi.org/10.1007/s00362-017-0946-0
Projection-based classification for functional data
Nadiyeh Darabi and S. Mohammad E. Hosseini-Nasab Statistics 54 (3) 544 (2020) https://doi.org/10.1080/02331888.2020.1750015
Classification rules based on distribution functions of functional depth
Olusola Samuel Makinde Statistical Papers 60 (3) 629 (2019) https://doi.org/10.1007/s00362-016-0841-0
The naive Bayes classifier for functional data
Yi-Chen Zhang and Lyudmila Sakhanenko Statistics & Probability Letters 152 137 (2019) https://doi.org/10.1016/j.spl.2019.04.017
Robust probabilistic classification applicable to irregularly sampled functional data
Yeonjoo Park and Douglas G. Simpson Computational Statistics & Data Analysis 131 37 (2019) https://doi.org/10.1016/j.csda.2018.08.001
Classification with incomplete functional covariates
Majid Mojirsheibani and Crystal Shaw Statistics & Probability Letters 139 40 (2018) https://doi.org/10.1016/j.spl.2018.03.010
On some classifiers based on multivariate ranks
Olusola Makinde and Biman Chakraborty Communications in Statistics - Theory and Methods 47 (16) 3955 (2018) https://doi.org/10.1080/03610926.2017.1366520
Data-driven kNN estimation in nonparametric functional data analysis
Lydia-Zaitri Kara, Ali Laksaci, Mustapha Rachdi and Philippe Vieu Journal of Multivariate Analysis 153 176 (2017) https://doi.org/10.1016/j.jmva.2016.09.016
On nonparametric classification for weakly dependent functional processes
Ahmad Younso ESAIM: Probability and Statistics 21 452 (2017) https://doi.org/10.1051/ps/2017002
On the classification problem for Poisson point processes
Alejandro Cholaquidis, Liliana Forzani, Pamela Llop and Leonardo Moreno Journal of Multivariate Analysis 153 1 (2017) https://doi.org/10.1016/j.jmva.2016.09.002
On visual distances for spectrum-type functional data
A. Cholaquidis, A. Cuevas and R. Fraiman Advances in Data Analysis and Classification 11 (1) 5 (2017) https://doi.org/10.1007/s11634-015-0217-7
Classification in general finite dimensional spaces with the k-nearest neighbor rule
Sébastien Gadat, Thierry Klein and Clément Marteau The Annals of Statistics 44 (3) (2016) https://doi.org/10.1214/15-AOS1395
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 211 (2015) https://doi.org/10.1007/978-3-319-25388-6_16
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 25 (2015) https://doi.org/10.1007/978-3-319-25388-6_3
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 53 (2015) https://doi.org/10.1007/978-3-319-25388-6_6
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 131 (2015) https://doi.org/10.1007/978-3-319-25388-6_11
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 75 (2015) https://doi.org/10.1007/978-3-319-25388-6_7
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 105 (2015) https://doi.org/10.1007/978-3-319-25388-6_9
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 193 (2015) https://doi.org/10.1007/978-3-319-25388-6_15
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 3 (2015) https://doi.org/10.1007/978-3-319-25388-6_1
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 33 (2015) https://doi.org/10.1007/978-3-319-25388-6_4
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 251 (2015) https://doi.org/10.1007/978-3-319-25388-6_20
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 223 (2015) https://doi.org/10.1007/978-3-319-25388-6_17
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 153 (2015) https://doi.org/10.1007/978-3-319-25388-6_12
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 241 (2015) https://doi.org/10.1007/978-3-319-25388-6_19
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 165 (2015) https://doi.org/10.1007/978-3-319-25388-6_13
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 95 (2015) https://doi.org/10.1007/978-3-319-25388-6_8
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 233 (2015) https://doi.org/10.1007/978-3-319-25388-6_18
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 43 (2015) https://doi.org/10.1007/978-3-319-25388-6_5
The Mahalanobis Distance for Functional Data With Applications to Classification
Pedro Galeano, Esdras Joseph and Rosa E. Lillo Technometrics 57 (2) 281 (2015) https://doi.org/10.1080/00401706.2014.902774
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 175 (2015) https://doi.org/10.1007/978-3-319-25388-6_14
New insights into Approximate Bayesian Computation
Gérard Biau, Frédéric Cérou and Arnaud Guyader Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 51 (1) (2015) https://doi.org/10.1214/13-AIHP590
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 13 (2015) https://doi.org/10.1007/978-3-319-25388-6_2
Lectures on the Nearest Neighbor Method
Gérard Biau and Luc Devroye Springer Series in the Data Sciences, Lectures on the Nearest Neighbor Method 111 (2015) https://doi.org/10.1007/978-3-319-25388-6_10
Spatial depth-based classification for functional data
Carlo Sguera, Pedro Galeano and Rosa Lillo TEST 23 (4) 725 (2014) https://doi.org/10.1007/s11749-014-0379-1
A partial overview of the theory of statistics with functional data
Antonio Cuevas Journal of Statistical Planning and Inference 147 1 (2014) https://doi.org/10.1016/j.jspi.2013.04.002
Is thek-NN classifier in high dimensions affected by the curse of dimensionality?
Vladimir Pestov Computers & Mathematics with Applications 65 (10) 1427 (2013) https://doi.org/10.1016/j.camwa.2012.09.011
Consistent Nonparametric Regression for Functional Data Under the Stone–Besicovitch Conditions
Liliana Forzani, Ricardo Fraiman and Pamela Llop IEEE Transactions on Information Theory 58 (11) 6697 (2012) https://doi.org/10.1109/TIT.2012.2209628
Supervised Classification for a Family of Gaussian Functional Models
AMPARO BAÍLLO, ANTONIO CUEVAS and JUAN ANTONIO CUESTA‐ALBERTOS Scandinavian Journal of Statistics 38 (3) 480 (2011) https://doi.org/10.1111/j.1467-9469.2011.00734.x
On local times, density estimation and supervised classification from functional data
P. Llop, L. Forzani and R. Fraiman Journal of Multivariate Analysis 102 (1) 73 (2011) https://doi.org/10.1016/j.jmva.2010.08.002
Dissimilarity representation on functional spectral data for classification
Diana Porro‐Muñoz, Isneri Talavera, Robert P. W. Duin, Noslen Hernández and Mauricio Orozco‐Alzate Journal of Chemometrics 25 (9) 476 (2011) https://doi.org/10.1002/cem.1393
Rates of Convergence of the Functional $k$-Nearest Neighbor Estimate
Gérard Biau, Frédéric Cerou and Arnaud Guyader IEEE Transactions on Information Theory 56 (4) 2034 (2010) https://doi.org/10.1109/TIT.2010.2040857
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
Diana Porro, Robert W. Duin, Isneri Talavera and Noslen Hdez Lecture Notes in Computer Science, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 5856 513 (2009) https://doi.org/10.1007/978-3-642-10268-4_60
A k-nearest neighbor approach for functional regression
Thomas Laloë Statistics & Probability Letters 78 (10) 1189 (2008) https://doi.org/10.1016/j.spl.2007.11.014
Functional and Operatorial Statistics
Amparo Baíllo and Antonio Cuevas Contributions to Statistics, Functional and Operatorial Statistics 43 (2008) https://doi.org/10.1007/978-3-7908-2062-1_7
Convergence de l'estimateur à noyau des k plus proches voisins en régression fonctionnelle non-paramétrique
Florent Burba, Frédéric Ferraty and Philippe Vieu Comptes Rendus. Mathématique 346 (5-6) 339 (2008) https://doi.org/10.1016/j.crma.2008.01.022
Robust estimation and classification for functional data via projection-based depth notions
Antonio Cuevas, Manuel Febrero and Ricardo Fraiman Computational Statistics 22 (3) 481 (2007) https://doi.org/10.1007/s00180-007-0053-0
Learning Theory
Magalie Fromont and Christine Tuleau Lecture Notes in Computer Science, Learning Theory 4005 94 (2006) https://doi.org/10.1007/11776420_10